Greenplum 6新特性:
在线扩容工具GPexpand剖析Greenplum 6新特性: 在线扩容工具GPexpand剖析 杜佳伦 (jdu@pivotal.io) 大纲 • Greenplum 集群部署 • GPExpand简介与具体用法 • Greenplum 6中GPExpand的改进与实现 Greenplum 集群部署 Greenplum 集群部署 • gp_segment_configuration 字段名 描述 dbid distclass 分布列的操作类 GPExpand简介与具体用法 • GPExpand是Greenplum的扩容工具,可以为集群增加新的节 点来支持更大容量的存储和更高的计算能力。 • 随着Greenplum一起安装发布,在$GPHOME/bin下面,和其 他辅助工具,如gpstart,gpstop,gpactivatestandby一样,是一个 用python写的命令行脚本。 GPExpand简介与具体用法0 码力 | 37 页 | 1.12 MB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum白皮书 开源 Greenplum 新篇章: 兼容欧拉开源操作系统的数据平台 支持国产生态的高级分析数据平台 作者:Greenplum 中文社区、 欧拉开源社区 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 白皮书 ........................................................................................ 4 欧拉开源操作系统 .................................................................................................. ........................................................................................ 6 欧拉开源操作系统平台架构 ..............................................................................................0 码力 | 17 页 | 2.04 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1本文档的版权归[陈淼]个人所有,未经许可和授权不得抄袭和引用。 本文档中的绝大部分内容都经过编者重新考量和实测验证,有些观点与官方手册有 出入,仅代表编者本人观点,与官方手册无关。本书中可能会提及一些非官方的命令和 工具等,仅用于讲解相关知识,如有缺失相关细节的情况,请谅解。 致读者 如果您在阅读和参考本书的过程中发现有任何不妥之处,或者有任何的建议和意见, 欢迎联系编者,本书主要针对 GP 数 ... - 44 - Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 4 - 第三方客户端工具 .................................................................................................. .......................................................................................... - 95 - 系统模式 ................................................................................................0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum数据库架构分析及5.x新功能分享开源数据库(greenplum.org),良性生态系统 5 Pivotal Confidential–Inter nal Use Only 5 © Copyright 2013 Pivotal. All rights reserved. Greenplum 架构 6 Pivotal Confidential–Inter nal Use Only 平台概况 产品特性 客户端访问和工具 多级容错机制 无共享大规模并行处理 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 语言支持 标准SQL支持,SQL 2003 OLAP扩展 支持 MapReduce 扩展编程语言 (Python,R, Java, Perl, C/C++) 第三方工具 BI 工具, ETL 工具 文本分析,数据挖掘等 管理工具 GP Command Center GP Workload Manager 7 Pivotal Confidential–Inter nal Use Only0 码力 | 44 页 | 8.35 MB | 1 年前3
Greenplum 精粹文集SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum google、yahoo、ibm 和 TD),说干就干,花了一年多的时间 完成最初的版本设计和开发,用软件实现了在开放 X86 平台上的分布 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道 Greenplum 的数据库引擎层是基于著名的开源数据库 Post0 码力 | 64 页 | 2.73 MB | 1 年前3
Pivotal Greenplum 最佳实践分享• 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 置到8个Instance,这样可以尽可能的发挥每个 CPU的处理性能。 Master query plan Client Segments M22 统计信息收集 对于系统表和用户表需要收集统计信息,GPDB的查询计划是cost base的,统计信息的准确性对查询 计划的优劣有很大影响; 对于字段数较多的表,可关闭gp_autostate_mode (on_no_stats=>none),仅对必要列执行Analyze, 只在结果中返回的列无需收集统计信息; 对于频繁创建表删表的系统,可关闭gp_autostate_mode(on_no_stats=> on_change – gp_autostats_on_change_threshold = 5000000(资料依据项目而定) Truncate操作不会丢失字段级统计信息,在适当条件下可仅针对系统字段执行Analyze 垃圾空间回收 • GPDB采用MVCC机制,UPDATE 或 DELETE并非物理删除,而只是对无效记 录做标记; • Update/delete操作后,数0 码力 | 41 页 | 1.42 MB | 1 年前3
Greenplum 介绍时还能够支持涵盖 OLTP 型业务的混合负载,从而帮助客户真正打通业务-数据-洞见-业务的闭环。 目前,Greenplum 已经为国内外各行各业客户所广泛使用,支撑着全球各大行业的核心生产系统, 其涉及领域涵盖金融、保险、证券、通信、航空、物流、零售、媒体、政府、医疗、制造、能源 等。其中,国际客户包括摩根斯坦利、摩根大通、美国国家税务局、美联储、三星、戴尔、福特、 爱立信等,国内 C 等。 ● 支持标准的平台:支持 SQL、JDBC 和 ODBC 等行业标准。经过半个多世纪的发展, SQL 成为了数据平台的万向头,向上可以连接各种 BI 工具、可视化工具和数据分析工具, 向下可以连接各种 ETL 工具、各种数据源和各种格式的数据等。 ● 集成数据分析平台:支持商业智能(BI)、文本、GIS、图、图像等。流式支持也在开发 中。通过 Pivotal 开源的 Apache 1 个 月左右,现在只需要十几个小时。 ● 具备企业级稳定性的平台:Greenplum 经过十多年发展,有大量活跃客户,大量数百节点 集群为全球 2000 强企业生产系统提供服务,稳定性非常高。 ● 具备成熟生态系统的平台:Greenplum 生态非常完善,有大量的合作伙伴。 发展历程 Greenplum 公司成立于 2003 年,2008 年发布 Greenplum 数据库产品。20100 码力 | 3 页 | 220.42 KB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案今天的数据库供应商 网络运算的发展速度已经超过了主流数据库 • 海量规模 • 高性价比 • 高效率 数据库管理系统(DBMS)的 规模/容量 11 需要采用一种新的方法 •“一切皆可商用”:商业即用型x86 服务器、存储设备、网络 •通过软件很容易将处理能力扩展到 1000s的内核/系统 Greenplum • “黑盒子” • “大铁箱” • 大磁盘 过去Google™ 曾经用来实现信息搜索功能的技术, 确保关键任务的可靠性 • 最出色的性能 • 高度灵活性 • 逐步扩展计算能力 • 动态措施 • 数据访问: • 在一个系统中协调所有企业数据的位置 • 可以通过任何语言(SQL、M/R等)进行分析 14 强大并且不断扩展的合作伙伴网络 硬件供应商 商务智能工具 15 服务供应商 业内支持和认可 行业奖励 “ Greenplum能够让企业在两 个方面同时达到最满意的效果: 供程序员使用的MapReduce以 “可能会成为数据仓库和数据 库管理系统市场的突破力量” Gartner的Donald Feinberg 17 通过Greenplum超级数据处 理引擎增强竞争优势 Greenplum数据引擎:内容和方式 价值主张 – 性价比: 性能可达到传统方案(Oracle、Teradata)的 10到100倍, 而成本只是其一小部分 – 可伸缩性:从较低的万亿字节扩展到千万亿字节 – 开放式系统:在通用系统和开放源软件的基础上创建0 码力 | 45 页 | 2.07 MB | 1 年前3
Greenplum机器学习⼯具集和案例thegiac.com www.top100summit.com Greenplum机器器学习⼯工具集和案例例 姚延栋 Pivotal 研发技术总监 2017.thegiac.com • Greenplum ⼤大数据平台 • Greenplum 机器器学习⼯工具 • Greenplum 机器器学习案例例 ⼤大纲 2017.thegiac.com Greenplum: 集成数据平台:BI/DW、文本、GIS、图、图像、机器学习 • 开放源代码,持续大力投入 • 敏捷方法学:快速迭代、持续发布、质量内建 • 企业级稳定性,成熟生态系统 2017.thegiac.com Greenplum: 机器学习工具集 2017.thegiac.com • PL/X:各种语言实现自定义函数(存储过程) • MADLib: 数据挖掘、统计分析、图(Graph)等算法 数据挖掘、统计分析、图(Graph)等算法 • GPText:文本检索和分析 • GeoSpatial:地理信息数据分析 • Image: 图像数据分析 Greenplum 机器器学习⼯工具集 2017.thegiac.com Greenplum Procedure Language PLPython, PLR 2017.thegiac.com PL/Python 例例⼦子 ● CREATE TABLE0 码力 | 58 页 | 1.97 MB | 1 年前3
Greenplum 编译安装和调试Greenplum 目前官方支持 Redhat/Centos/SuSE/Ubuntu 等Linux系统。大量开发人员包括我自己 使用Mac系统,但是不在官方支持列表中。 1.1 在 Mac 系统上编译 首先需要关闭苹果操作系统的 SIP 特性,否则无法初始化集群。 1. 重启操作系统 2. 重启过程中按下 command+R 进入恢复模式 3. 从 Utilities 菜单选择 菜单选择 Terminal 4. 执行 csrutil disable 5. 重启操作系统 // 安装Greenplum管理脚本依赖的 Python 包 $ wget https://bootstrap.pypa.io/get-pip.py $ sudo python get-pip.py $ sudo pip install psutil lockfile paramiko setuptools --disable-gpcloud \ --disable-gpfdist --prefix=$HOME/gpdb.master $ make [-j4] $ make install 在苹果系统上初始化Greenplum单节点集群时,需要做些准备工作: ● 添加export PGHOST=localhost至~/.bash_profile ● 将本机的hostname与1270 码力 | 15 页 | 2.07 MB | 1 年前3
共 24 条
- 1
- 2
- 3













