积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(8)Greenplum(8)

语言

全部中文(简体)(8)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.110 秒,为您找到相关结果约 8 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum 介绍

    续发布和质量内建。2017 年 Greenplum 发布了 10 个版本,以前发布一个版本需要 1 个 月左右,现在只需要十几个小时。 ● 具备企业级稳定性的平台:Greenplum 经过十多年发展,有大量活跃客户,大量数百节点 集群为全球 2000 强企业生产系统提供服务,稳定性非常高。 ● 具备成熟生态系统的平台:Greenplum 生态非常完善,有大量的合作伙伴。 发展历程 Greenplum
    0 码力 | 3 页 | 220.42 KB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    FORK子进 程并行工作; • 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 置到8个Instance,这样可以尽可能的发挥每个 CPU的处理性能。 Master query plan  GPDB内部的对象:所有的表(包括分区表)、索引、视图等都称为对象  GPDB最佳实践所推荐的对象管理要求是:一个数据库内对象不要超过10 0000个  最佳实践是出于对系统性能和稳定性因素建议对pg_class 所维护的对象数进行约束  减少对象数的方法: – 提高分区粒度 – 避免大范围使用列存储  pg_class对象数如果不进行约束,可能会产生以下问题:
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    一些帮助,在编写过程 中,仍会参考官方文档,但绝不是简单的翻译,甚至有些内容会与官方文档不一致。 编者提醒,升级版本极其重要,4 版本早该淘汰了,5 版本和 6 版本都带来了极大 的性能和稳定性的提升。 声明 本文档的版权归[陈淼]个人所有,未经许可和授权不得抄袭和引用。 本文档中的绝大部分内容都经过编者重新考量和实测验证,有些观点与官方手册有 出入,仅代表编者本 在缺省情况下,网络层使用 UDPIFC 协议。这是经过改善的 UDP 协议,在 UDP 协 议的基础上增强了数据包校验,其可靠性与 TCP 协议相似,但其性能和扩展性远好于 TCP 协议。当集群规模较小,同时,网络的稳定性较差的时候,如果 UDPIFC 协议不 稳定,可以考虑使用 TCP 协议,例如只有几十台主机时。通常,还是强烈建议配备稳 定的网络环境,使用 UDPIFC 协议。 冗余与故障切换 确保计算节点机器的资源不会被耗尽,否则,都应该尽最大可能避免 Master 和 Standby 设置到 Instance 主机上,因为,这种模式下,一旦系统在处理负载很高的 任务,Master 将很难获得足够的资源,其响应会变慢,稳定性会下降。从两一个角度 来说,如果可以确保集群是非常良性的运转,不会有任务造成 Master 很大的压力, 可以适当配置计算能力稍差的机器。 网络层冗余 网络层关系到 Instance
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Greenplum 6新特性: 在线扩容工具GPexpand剖析

    节点数量发生变化后重新计算取模,移动数据量大 – 不仅存在新旧节点间的移动,旧节点之间也要移动 改进与实现 • 减少重分布数据移动量 – Jump Consistent Hash ▪ 均匀性:通过概率做到均匀分布 ▪ 稳定性:在相同集群大小下,同一个Tuple每次计算结果相同 ▪ 单调性:扩容过程中,旧节点之间没有数据迁移 ▪ 高效性:对于集群大小为N的时候,时间复杂度为Log(N) – 更多算法细节请参考链接。https://arxiv
    0 码力 | 37 页 | 1.12 MB | 1 年前
    3
  • pdf文档 Greenplum机器学习⼯具集和案例

    完善的标准支持:SQL、JDBC、ODBC • 集成数据平台:BI/DW、文本、GIS、图、图像、机器学习 • 开放源代码,持续大力投入 • 敏捷方法学:快速迭代、持续发布、质量内建 • 企业级稳定性,成熟生态系统 2017.thegiac.com Greenplum: 机器学习工具集 2017.thegiac.com • PL/X:各种语言实现自定义函数(存储过程) •
    0 码力 | 58 页 | 1.97 MB | 1 年前
    3
  • pdf文档 Greenplum介绍

    SQL的支持程度 支持完善,几乎所有 PostgreSQL支持的SQL, gp都支持。 支持有限的SQL,查询 支持子查询,但不支持 窗口函数。大部分dml都 不支持,只支持append。 稳定性 有较多的bug。 比较稳定。 Greenplum架构图 Segment Host Segment Host Segment Host Segment Host 高 速 以
    0 码力 | 38 页 | 655.38 KB | 1 年前
    3
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    可部署在不同操作系统、 不同芯片的环境,适合本地部署、多云环境(公有云和私有云)中。Greenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源操作系统是
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    不擅长于交互式(interactive)的 Ad-hoc 查询, 大多通过预关联的方式来规避这个问题;另外,在并发处理方面的能 力较弱。高并发场景下,需要控制计算请求的并发度,避免资源过载 导致的稳定性问题和性能下降问题。 3) 架构灵活性的对比 前面提到,为保证数据的高性能计算,MPP 数据库节点和数据之 间是紧耦合的,相反,Hadoop 的节点和数据是没有耦合关系的。 这就决定了 Hadoop
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
Greenplum介绍Pivotal最佳实践分享Database管理管理员指南特性在线扩容工具GPexpand剖析机器学习案例完全兼容欧拉开源操作系统操作系统HTAP数据平台精粹文集
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩