Greenplum 新一代数据管理和数据分析解决方案开放式系统:在通用系统和开放源软件的基础上创建 前提条件 – 硬件:基于开放式标准硬件 – 软件:Postgres和Greenplum – 体系架构:海量并行处理体系,针对商务智能/数据仓库 进行了优化,解决了所有数据流瓶颈问题 Greenplum数据引擎 全球最强大的分析数据仓库 海量并行查询 • 可以比以往更快地获取 查询结果 • 在数据增长的同时确保 高性能分析 统一的分析处理功能 • 为数据仓库、市场、 网络互连 并行查询规划和调度 区段服务器 (处理和存储) SQL 查询和 MapReduce程序 MPP (海量并行处理) “完全不共享”体系 Greenplum体系:并行数据流 21 • 通用并行数据流引擎可以通过本地方 式执行 SQL和MapReduce • 采用了针对商用硬件优化的MPP“完 全不共享”体系 • 可以在很多100s服务器上扩展到 1000s商用处理内核 第一个支持互联网级分析技术(由Google普及)的产品 • 采用新的编程模型,在商用硬件上并行处理和执行 • 可以使客户洞察力和数据货币化程度达到前所未有的高度 MapReduce Greenplum MapReduce的优势 • 处理在任何地点存储的任何类型的数 据 • 将SQL的普遍性与MapReduce的灵 活编程模式结合起来 • 针对业务关键分析功能提供企业级集 成、支持和发布0 码力 | 45 页 | 2.07 MB | 1 年前3
Greenplum数据库架构分析及5.x新功能分享产品特性 客户端访问和工具 多级容错机制 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 索引(B树,位图,GiST) 安全性 语言支持 标准SQL支持,SQL 2003 OLAP扩展 支持 MapReduce 扩展编程语言 (Python,R, Java, Perl, C/C++) 第三方工具 BI 工具, ETL 工具 文本分析,数据挖掘等 管理工具 GP Command Center GP Workload 一个数据节点可以配置多个节点实例(Segment Instances) • 节点实例并行处理查询(SQL) • 数据节点有自己的CPU、磁盘和 内存(Share nothing) • 高速Interconnect处理持续 数据流(Pipelining) Interconnect Segment Host Segment Instance Segment Instance Segment Instance Segment0 码力 | 44 页 | 8.35 MB | 1 年前3
Greenplum 精粹文集来交换数据,效率很低,MapReduce 要求每个步骤间的数据都要序列 化到磁盘,这意味着 MapReduce 作业的 I/O 成本很高,导致交互分 析和迭代算法开销很大,MPP 数据库采用 Pipline 方式在内存数据流 中处理数据,效率比文件方式高很多。 总结以上几点,MPP 数据库在计算并行度、计算算法上比 Hadoop 更加 SMART,效率更高;在客户现场的测试对比中,Mapreduce 对 于单表的计算 具有很强数据操纵能力和过程语言的流程控制能力,SQL 语言是专 门为统计和数据分析开发的语言,各种功能和函数琳琅满目,SQL 语言不仅适合开发人员,也适用于分析业务人员,大幅简化了数据 的操作和交互过程。 而对 MapReduce 编程明显是困难的,在原生的 Mapreduce 开发 框架基础上的开发,需要技术人员谙熟于 JAVA 开发和并行原理, 不仅业务分析人员无法使用,甚至技术人员也难以学习和操控。为 了解决易用性的问题,近年来 还有plpythonu,这个是Greenplum自带的language,一些通用的函数, 用 plpythonu 来编写也是极其不错的选择。 关于这两种语言,可以参考 PostgreSQL 文档的【服务器端编程】章节, 以及 Perl 和 Python 语言。 Greenplum 是开放的数据库,又是开源的数据库,可以分享的知识其 实真的很多,如果你这方面的知识基础还不是很高,可以多读一些文 章然后收藏起来,慢慢进步。0 码力 | 64 页 | 2.73 MB | 1 年前3
并行不悖- OLAP 在互联网公司的实践与思考6 数据仓库体系架构 数据流转过程 • 1 业务数据的产生 —— OLTP • 2 业务数据的中转 —— ETL服务器 • 3 数据的存储和计算 —— OLAP集群 • 4 结果数据的展现 —— 数据集市 • 5 访问接口的封装 —— API接口服务器 • 6 最终数据的显示 —— 前端界面 • 7 结果数据的交互 —— OLTP,趋势分析 • 8 OLAP数据流转 —— dbsync平台0 码力 | 43 页 | 9.66 MB | 1 年前3
Greenplum 介绍者,社 区贡献者包括阿里云、中移动等大公司,也有诸多中小公司和数据库爱好者。 开源之后,Greenplum 把敏捷软件开发方法学引入到分布式数据库的开发中,通过使用站立会议、 回顾会议、结对编程、持续集成、测试驱动、单周迭代等敏捷方法建立了高效的快速反馈系统, 大大提高了产品的质量和客户的满意度。Greenplum 5.0 是开源之后发布的第一个稳定版本,大 约保持 1 个半月一个版本的发布速度。Greenplum0 码力 | 3 页 | 220.42 KB | 1 年前3
Greenplum机器学习⼯具集和案例PageRank 性能 2017.thegiac.com MADlib vs. Spark: 不不同的产品,侧重点不不同 MADlib Spark 算法库 易用性 需要编程 查询优化 成熟度稍差 内存和流处理 通过 Gemfire SQL 语法支持 需要提升 磁盘数据 不是核心焦点 并发性能 不是核心焦点 大数据关联 不是核心焦点0 码力 | 58 页 | 1.97 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1的应用程序(比如WEB服务),GP MapReduce已经毫无意义了,不提也罢。不过,如 果对性能和稳定性有很高的要求,导出到命令管道,可能会是一项极其复杂的工作,因 为命名管道的状态无法精确的控制和获取,这就导致,在编程时需要设计很多的迂回措 施来解决这些问题,最典型的场景就是以前的gptransfer命令,目前该命令已经废除, 不过,该命令从一开始出现就注定是失败的,可以欣赏一下这段代码注释: # Make0 码力 | 416 页 | 6.08 MB | 1 年前3
共 7 条
- 1













