积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(24)Greenplum(24)

语言

全部中文(简体)(24)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 24 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 并行不悖- OLAP 在互联网公司的实践与思考

    1 并行不悖 – OLAP 在互联网公司的实践与思考 赵飞祥 2 Greenplum现状说明 三 Greenplum体系架构 二 数据仓库体系架构 一 Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划 六 3 数据仓库体系架构 业务数据与数据使用归类 时间维度:过去 - 现在 - 未来 (数据的生命周期) • “现在”的数据 —— 数据仓库体系架构 数据流转过程 • 1 业务数据的产生 —— OLTP • 2 业务数据的中转 —— ETL服务器 • 3 数据的存储和计算 —— OLAP集群 • 4 结果数据的展现 —— 数据集市 • 5 访问接口的封装 —— API接口服务器 • 6 最终数据的显示 —— 前端界面 • 7 结果数据的交互 —— OLTP,趋势分析 • 8 OLAP数据流转 —— dbsync平台 7 数据仓库体系架构 Ø MPP ShareNothing 海量并行处理+完全无共享 Ø cpu计算能力 Ø 数据从Disk上的I/O吞吐性能 Ø master管理节点 Ø segment数据节点 • greenplum的核心功能 Ø 无共享MPP Ø 多态存储 Ø 高效数据加载 (gpfdist+外部表,每小时4TB+) Ø 分布分区 Ø 数据压缩 Ø 外部访问 15 Greenplum现状说明 三 Greenplum体系架构
    0 码力 | 43 页 | 9.66 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 2 由此,业界认识到对于海量数据需要一种新的计算模式来支持,这种 模式就是可以支持 Scale-out 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 布式计算思想,Greenplum 实现了基于数据库的分布式数据存储和并 行计算(GoogleMapReduce ——greenplum,因此而得名)召集了十几位业界大咖(据 说来自 google、yahoo、ibm 和 TD),说干就干,花了一年多的时间 完成最初的版本设计和开发,用软件实现了在开放 X86 平台上的分布 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    Instance : GP 的计算实例,很多时候也叫 Segment Primary : GP 的主计算实例 Mirror : GP 的镜像计算实例 MPP : 大规模并行处理 算子 : 执行计划中的运算操作 背景简介 多年前,编者翻译了 GP4.2.2 的 AdminGuide,如今,GP 已经历经了无数个版 本更新和迭代,编者也有了更多的感悟,放眼 .......................................................................................... - 18 - 并行数据装载 .............................................................................................. ...................................................................................... - 37 - 第五章:访问数据库 ...............................................................................................
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Greenplum数据库架构分析及5.x新功能分享

    客户端访问和工具 多级容错机制 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) Pivotal Confidential–Inter nal Use Only MPP(大规模并行处理)无共享体系架构 从主节点 … 主节点 SQL • 主节点和从主节点,主节点负责协调整个集群 • 一个数据节点可以配置多个节点实例(Segment Instances) • 节点实例并行处理查询(SQL) • 数据节点有自己的CPU、磁盘和 内存(Share nothing) • 高速Interconnect处理持续 Instance Segment Instance Segment Instance 节点N 8 Pivotal Confidential–Inter nal Use Only 数据分布: 并行化的根基 最重要的策略和目标是均匀分布数据到各个数据节点。 43 Oct 20 2005 12 64 Oct 20 2005 111 45 Oct 20 2005 42 46 Oct 20
    0 码力 | 44 页 | 8.35 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    现在被Greenplum用于数据仓库 现在的解决方案 12 Greenplum愿景:企业数据集合 13 • 在企业内创建统一的数据运算平台 • 企业所有者可以直接控制其数据实例 • 通过实体整合提供企业级数据访问功能 • 灵活的扩展和配置降低了投资的平均风险 源文件 源数据 源数据 源文件 数据仓库和分析应 用程序 Greenplum数据架构 商用硬件集群 分析 数据 市场 企业数 据仓库 实体整合 • 提高服务器使用率 • 降低总硬件成本 • 降低能量成本 • 可以预估的服务等级 • 确保关键任务的可靠性 • 最出色的性能 • 高度灵活性 • 逐步扩展计算能力 • 动态措施 • 数据访问: • 在一个系统中协调所有企业数据的位置 • 可以通过任何语言(SQL、M/R等)进行分析 14 强大并且不断扩展的合作伙伴网络 硬件供应商 商务智能工具 15 服务供应商 业内支持和认可 个方面同时达到最满意的效果: 供程序员使用的MapReduce以 及供数据库管理使用的 SQL。” Monash Research 的Curt Monash 分析师褒奖 “ Greenplum正在通过新式技术来 推动并行数据库的发展,从而满足互 联网级企业的需求。” ZDNet的Dana Gardner Magic Quadrant 2007 (”远见者象限”) 最佳集群解决方案 Global 250
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Greenplum 6: 混合负载的理想数据平台

    分析型 VS MPP - massively parallel processing - 大规模并行处理 master standby primary segment mirror segment 6 Pivotal Confidential–Internal Use Only 数据分布: 并行化的根基 最重要的策略和目标是均匀分布数据到各个数据节点。 43 Oct 20 2005 12 amount FROM orders JOIN customer USING (cust_id) WHERE date=2008; 生成并行查询计划 8 Pivotal Confidential–Internal Use Only 执行并行计划 Standby Master … Master Host Interconnect Segment Host Node1 Segment Confidential–Internal Use Only 卓越的OLAP特性 列式存储 分区、压缩 高级特性 递归查询、窗口函数 集成分析 多格式、多语言 Madlib: 机器学习 数据库内并行模型训练和预测、分类 ORCA 复杂查询优化器 成熟稳定 完备生态、支撑核心生产系统 13 Pivotal Confidential–Internal Use Only 列式存储 表‘SALES’
    0 码力 | 52 页 | 4.48 MB | 1 年前
    3
  • pdf文档 Greenplum 分布式数据库内核揭秘

    Features Confidential │ ©2021 VMware, Inc. 4 Greenplum 是基于 PostgreSQL 所实现的大规模并行处理(MPP)开源数据平台,具有良好的弹性 和线性拓展能力,内置并行存储、并行通信、并行计算和并行优化功能,兼容 SQL 标准。拥有独 特的高效的 ORCA 优化器,具有强大、高效的 PB 级数据存储、处理和实时分析能力,同时支持 OLTP 型业务的混合负载。 数据存储分布化是分布式数据库要解决的第一个问题。 通过将海量数据分散到多个节点上,一方面大大降低了单个节点处理的数据量,另一方面也为处理 并行化奠定了基础,两者结合起来可以极大的提高系统的性能。譬如在 100 个节点的集群上,每 个节点仅保存总数据量的 1/100,100 个节点同时并行处理,性能会是单个配置更强节点的几十倍。 Greenplum 不仅仅实现了基本的分布式数据存储,还提供了更高级更灵活的特性,譬如多种分布 如 NULL,在存储在默认 分区 others 中: 分区表 Confidential │ ©2021 VMware, Inc. 13 Greenplum 支持多态存储,即单张用户表,可以根据访问模式的不同而使用不同的存储方式存储 不同的分区。例如根据数据的新、旧程度决定将数据存储至本地硬盘还是以外部表的方式存储在 HDFS 或者是 S3 中。Greenplum 提供以下存储方式: l 堆表
    0 码力 | 31 页 | 3.95 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    NA Instance实例数的配置建议 • Instance是GPDB的最小并行单元,每个Segment 节点一般配置4~8个Instance,初始化完成后很 难修改,需要提前规划; • 每个Instance都是一套独立的进程,当客户端 发起一个请求时,每个Instance都将FORK子进 程并行工作; • 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 、客户表等采用列存储,其它表采用行存储 数据压缩: • 在金融业,行压缩的数据压缩比在1:6左右,一般采用zlib5级压缩 • 数据压缩对于高并发查询分析系统可以大幅降低IO消耗,提升并行处理、混合负载的性能 分布键使用: • 尽量采用一个常用关联字段作为分布键,例如账号、客户号,这个可以提高关联条件的命中率,减少关联时数据重分布 (主要对大表) • 选用分布键同 waiting状态  解决方法: – 如果是被其它回话锁了,需要等待其它回话结束或者Cancel; – 极端的情况下,某些回话虽然终止了,但事务没有正常终止,此时可以用UTILITY模式访问对应的Instance,将 其终止 ex: PGOPTIONS='-c gp_session_role=utility' psql-h segment_host –d dbnme –p 40000
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    异性能、环境适应性强在 MPP 数据库领域独占鳌头,基于 Shared Nothing 的 MPP 高性能系统架构,Greenplum 可以将 PB 级的数据仓库负 载分解,并使用所有的系统资源并行处理单个查询。同时 Greenplum 具备数据库 ACID 特性,运行符合 ANSI 标准 的 SQL,可以让服务器群集能够以单一数据超级计算机的方式运行,且性能比传统数据库或其他同类平台高出数十甚 期间不会中断正在运行的所有查询;另外采用了 Jump Consistent Hash 的一致性哈希算法, 在数据重分布期间,每个旧节点仅移动出需要移动的数据到新节点上, 得益于创新的分布式死锁检测, 对于大量小表做并行重分布性能提升非常明显。 Greenplum VACUUM 提升 将在 Greenplum 7 中实现此功能,能够做到: 1 https://arxiv.org/pdf/2103 提高 VACUUM 删除尾随空堆页面的速度 l 可以选择使用 SKIP_LOCKED 选项来跳过对无法立刻被锁的表进行 VACUUM 和 ANALYZE l 可以使用--jobs 选项并行进行 VACUUMDB 和 VACUUM;也支持—skip-locked Greenplum 集群多站点复制 Greenplum 7 将实现集群之间的灾备相关的特性。众所周知,Greenplum
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
  • pdf文档 Greenplum机器学习⼯具集和案例

    bigint) AS ID) foo DISTRIBUTED BY (id); 2017.thegiac.com 2017.thegiac.com • 适合模型应用于数据子集的场景,并行执行效率非常高 • 如果节点间数据通讯,使用 适⽤用场景 2017.thegiac.com MADlib 2017.thegiac.com 强⼤大的分析能⼒力力 Analysis Nearest Neighbors • k-Nearest Neighbors 成熟的数据科学学习库 2017.thegiac.com • 更好的并行度 • 算法充分利用 MPP 架构实现并行 • 更好的可扩展性 • 算法随着数据扩充而线性扩展 • 更高的预测精准度 • 适用更多数据,而不是抽样 • 顶级 ASF 开源项目 • 社区驱动开发模式 类分析,建⽴立会话 识别模型和主题模 型 ● 建⽴立scoring pipeline, 对新访问 的安全性进⾏行行评估 ● 使⽤用可视化⼯工具对 结果进⾏行行更更好地呈 现 背景 2017.thegiac.com 数据源 • 数据 - API 访问⽇日志 - 客户数据 • 45 天区域数据 • 50亿条数据
    0 码力 | 58 页 | 1.97 MB | 1 年前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
并行并行不悖OLAP互联联网互联网公司实践思考Greenplum精粹文集Database管理管理员指南数据据库数据库架构分析功能分享一代新一代数据管理数据分析解决方案解决方案混合负载理想平台分布布式分布式内核揭秘Pivotal最佳完全兼容欧拉开源操作系统操作系统HTAP机器学习案例
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩