积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(30)Greenplum(30)

语言

全部中文(简体)(30)

格式

全部PDF文档 PDF(30)
 
本次搜索耗时 0.042 秒,为您找到相关结果约 30 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 基于 Greenplum 打造SaaS化电商服务平台

    基于GP打造SaaS化电商服务平台 聚水潭 秃鹰 赵坚密 2019.08.10 聚水潭成立于2014年1月,创始人兼CEO骆海东拥有超过二十年传统 及电商ERP的研发和实施部署经验,公司核心管理团队来自于阿里巴 巴、亚马逊、中国平安和麦包包等知名公司。 聚水潭创建之初,以电商SaaS ERP切入市场,凭借出色的产品和服务, 快速获得市场领先地位。随着客户需求的不断变化,如今聚水潭已经 发展成为以SaaS ERP为核心,集多种商家服务为一体的SaaS协同平台, 为全国近20万家电商企业提供全面的信息化解决方案。 经过5年多的发展,公司员工从2014年成立之初的9人增加到现在 1200多人。聚水潭已在全国设立了40多个线下服务分支机构,服务范 围覆盖超过268个城市,为客户提供及时、周到和专业的服务。 来自阿里巴巴旗下商家服务市场的最新数据显示,聚水潭已是企业 ERP类目中使用商家数最多的软件。自双十一购物节诞生以来,团队 生以来,团队 经历了每一次电商大促的考验,尽管每年承载单量成几何倍数增加, 聚水潭系统依然保持平稳、安全和顺畅地运行。2018年11月11日, 聚水潭系统处理订单总量达1.51亿单,成交额达341亿。 聚水潭简介 关键字 数据架构 推 送 库 中 间 库 商 品 库 核 心 库 辅 助 库 推 送 库 中 间 库 商 品 库 核 心 库 辅 助 库 推 送 库 中 间
    0 码力 | 7 页 | 547.94 KB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    和相关技术领域,主要工作职责是 售后支持,帮助我们的 Greenplum 用户解决生产需求和技术问题,我们坚持提供最专 业的建议和解决方案,提供最专业的技术支持服务,提供最专业的落地实施支持。 十多年来,参与过的项目不计其数,有 POC 测试,有开发支持,有故障支持,有 长期驻场支持,有临时的功能支持,甚至可能会作为用户看不见的后端支持,总之,我 们的目标是,努力解决用户的一切不违背自然规律的诉求,我们跟随着 Greenplum Greenplum 的 成长,见证了 Greenplum 从闭源到开源的成长历程,一路给 Greenplum 做各种补丁 脚本,也看到了 Greenplum 的大幅进步,甚至我们以前的小技巧也不再需要,持续的 进步,带来的是生态的蓬勃发展。 Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 2 - : GP 的控制节点/实例 Standby : GP 的备用控制节点/实例 Host(主机) : GP 的一台独立的机器设备 Instance : GP 的计算实例,很多时候也叫 Segment Primary : GP 的主计算实例 Mirror : GP 的镜像计算实例 MPP : 大规模并行处理 算子 : 执行计划中的运算操作
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    NA Instance实例数的配置建议 • Instance是GPDB的最小并行单元,每个Segment 节点一般配置4~8个Instance,初始化完成后很 难修改,需要提前规划; • 每个Instance都是一套独立的进程,当客户端 发起一个请求时,每个Instance都将FORK子进 程并行工作; • 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 置到8个Instance,这样可以尽可能的发挥每个 CPU的处理性能。 Master query plan Client Segments Segments Segments Segments Segment 统计信息收集  对于系统表和用户表需要收集统计信息,GPDB的查询计划是cost base的,统计信息的准确性对查询 计划的优劣有很大影响;  对于字段数较多的表,可关闭gp_autostate_mode (on_no_stats=>none),仅对必要列执行Analyze, 只在结果中返回的列无需收集统计信息;  对于频繁创建表删表的系统,可关闭gp_autostate_mode(on_no_stats=>
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 Greenplum 6: 混合负载的理想数据平台

    Greenplum 6: 混合负载的理想数据平台 高小明 全球领先的开源MPP大数据平台 可扩展性 ACID事务 VS 分布式 简单易用 VS 结构化 半结构非结构化 VS 事务型 分析型 VS MPP - massively parallel processing - 大规模并行处理 master standby primary primary segment mirror segment 6 Pivotal Confidential–Internal Use Only 数据分布: 并行化的根基 最重要的策略和目标是均匀分布数据到各个数据节点。 43 Oct 20 2005 12 64 Oct 20 2005 111 45 Oct 20 2005 42 46 Oct 20 2005 64 77 Oct 20 2005 32 48 here as an MPP relational database are well-showcased 12 Pivotal Confidential–Internal Use Only 卓越的OLAP特性 列式存储 分区、压缩 高级特性 递归查询、窗口函数 集成分析 多格式、多语言 Madlib: 机器学习 数据库内并行模型训练和预测、分类 ORCA 复杂查询优化器 成熟稳定
    0 码力 | 52 页 | 4.48 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    一、Greenplum 的前生今世 1. Greenplum 的起源 Greenplum 最早是在 10 多年前(大约在 2002 年)出现,基本上 和 Hadoop 是同一时期(Hadoop 约是 2004 年前后出现的,早期的 Nutch 可追溯到 2002 年)。 互联网行业经过之前近 10 年的由慢到快的发展,累积了大量信息和数 据,数据在爆发式增长,这些海量数据急需新的计算方式,需要一场 计算方式的革命。 传统的主机计算模式在海量数据面前,除了造价昂贵外,在技术上也 难于满足数据计算性能指标,传统主机的 Scale-up 模式遇到了瓶颈, SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 2 由此,业界认识到对于海量数据需要一种新的计算模式来支持,这种 模式就是可以支持 Scale-out 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    74 74 74 74 75 76 76 79 81 82 90 92 101 102 103 104 106 128 访问 访问UDW数据仓库 数据仓库 1 客⼾端⼯具访问UDW 2 图形界⾯的⽅式访问UDW 数据导⼊ 数据导⼊ insert加载数据 copy加载数据 外部表并⾏加载数据 从hdfs加载数据 从mysql中导⼊数据 从oracle中导⼊数据 139 139 139 141 142 146 152 152 163 177 177 183 190 190 191 192 udw优化指南 表膨胀 表膨胀 表膨胀的原因 如何避免表膨胀 UDW中 中Json类型 类型 Json相关操作 Json操作举例 Json相关函数 Json创建函数 Json处理函数 接⼊第三⽅ 接⼊第三⽅ BI ⼯具 ⼯具 ⼯具 ⼀、 UDW 接⼊ Zeppelin ⼆、 UDW 接⼊ SuperSet UDW 使⽤案例 使⽤案例 案例⼀ 利⽤ logstash+Kafka+UDW 对⽇志数据分析 案例⼆ 基于UDW实现⽹络流分析 PXF 扩展 扩展 配置 PXF 服务 创建 EXTENSION 读写 HDFS ⽬录 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
  • pdf文档 PostgreSQL和Greenplum 数据库故障排查

    微信号:laohouzi999 2018年PostgreSQL中国技术大会 PG故障排查 微信号:laohouzi999 2018年PostgreSQL中国技术大会 微信号:laohouzi999 1.安装时候的问题排查 2018年PostgreSQL中国技术大会 微信号:laohouzi999 1)关闭防火墙 service iptables stop service iptables status chkconfig postgres 336 Dec 8 11:30 postgresql-Sat.log -bash-4.1$ 2018年PostgreSQL中国技术大会 微信号:laohouzi999 2.日志的配置 2018年PostgreSQL中国技术大会 微信号:laohouzi999 -bash-4.1$ cat postgresql.conf |egrep -i "Log_directory ddl, mod, all 控制记录哪些SQL语句。none不记录,ddl记录所有数据定 义命令,比如CREATE,ALTER,和DROP 语句。mod记录所有ddl 语句,加上数据修改语句INSERT,UPDATE等,all记录所有执行的 语句,将此配置设置为all可跟踪整个数据库执行的SQL语句。 log_duration = off 记录每条SQL语句执行完成消耗的时间,将此配置设置为on
    0 码力 | 84 页 | 12.61 MB | 1 年前
    3
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    白皮书 开源 Greenplum 新篇章: 兼容欧拉开源操作系统的数据平台 支持国产生态的高级分析数据平台 作者:Greenplum 中文社区、 欧拉开源社区 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 白皮书 ............................................................................ 5 openEuler 面向多样性算计算的创新 ................................................................................................. ............................................................................................ 8 完善的生态工具链 ..............................................................................................
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    最大、速度最快、性价比最好的数据库引擎产品和服务。 • Greenplum总部位于圣马蒂奥,加利福尼亚州,美国,成立于2003年6月。 • Greenplum 中国于2008年12月正式成立. 2010/4/8 官方网站: www.greenplum.com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza Oracle Greenplum Neoview Vertica Paraccel Aster Data Hadoop Current Database Vendor Landscape 用户人数 • 安全度 • 查询、报告、分析的数量 • 数据的高度多样性 • 大量定制数据 • 监管要求 商务智能/数据仓库发展趋势 一切都在增长! 数据仓库工作量:数据膨胀 面临的新难题是如何处理大规模数据 过去的10年 现在 HPC 企业 SME 万亿字节 千兆字节 兆字节 千万亿字节 万亿字节 千兆字节 行业商务智能解决方案的实例 政府 电信 金融服务 公民服务
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 深度揭秘Greenplum开源数据库透明加密

    王淏舟 1. 我们所面临的问题 2. 基于pgcypto的数据加密方案 3. GPDB数据透明加密方案设计 4. GPDB数据透明加解密流程 5. 总结 我们所面临的问题 什么是Greenplum数据库 一款开源的HTAP数据库: • MPP架构 • 完整的事务+ACID+标准SQL支持 • 支持上千个节点的部署 • 支持PB级文件 • 丰富的ETL和外部组件 • 支持 支持Python/R/Java直接访问处理数据库数据 • https://github.com/greenplum-db/gpdb GPDB GPDB的数据安全 用户 • 连接数据库 • 运行业务 DBA • 管理数据库 • 业务审计 System Admin • 管理集群 • 数据备份恢复 运行模式 GPDB的数据安全 用户 • 连接数据库 • 运行业务 DBA 管理模式 GPDB的数据安全 用户 • 连接数据库 • 运行业务 DBA • 管理数据库 • 业务审计 System Admin • 管理集群 • 数据备份恢复 管理模式 GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 GPDB为单独数据库软件 • 非一体机 • 缺少对硬件和系统的控制 潜在风险(一) GPDB的数据安全 System
    0 码力 | 48 页 | 10.19 MB | 1 年前
    3
共 30 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
基于Greenplum打造SaaS电商服务平台服务平台Database管理管理员指南Pivotal最佳实践分享混合负载理想数据精粹文集仓库数据仓库UDWUCloud中立计算服务商PostgreSQL据库数据库故障排查完全兼容欧拉开源操作系统操作系统HTAP一代新一代数据管理分析数据分析解决方案解决方案深度揭秘透明加密
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩