Greenplum on Kubernetes
容器化MPP数据库Kubernetes 容器化MPP数据库 AGENDA 云数据库背景 云数据库实现方案 Greenplum on Kubernetes Greenplum Operator 总结 云数据库背景 云数据库背景 ● 资源变化 ○ 本地资源 → 云 ○ 静态资源 → 弹性需求 ● 数据变化 ○ 内部数据 → 多数据源 ○ 数据规模 → 不易预测 ○ 数据格式 → 半结构化/无模式 ○ 数据隔离 云数据库需求 ● DBasS ○ 自动化运维 ○ 自动化调优 ● 弹性资源管理 ○ 存储资源 ○ 计算资源 ● 安全 ○ 用户数据 ○ 临时文件 ○ 网络传输 ○ 权限控制 ● 跨云 ○ 公有云 ○ 私有云 云数据库实现方案 ● 全新数据库 ○ Snowflake ● 原有数据库架构升级 ○ Vertica Eon Mode ● 容器化数据库+Kubernetes ○ Segment Instance Segment 5 (Mirror) 容器化Greenplum ? + = 容器化Greenplum ● 容器粒度 ○ Segment主机 VS. Segment实例 ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联 ○ 本机网络 ○ 跨机网络 ● 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary0 码力 | 33 页 | 1.93 MB | 1 年前3
基于 Greenplum 打造SaaS化电商服务平台基于GP打造SaaS化电商服务平台 聚水潭 秃鹰 赵坚密 2019.08.10 聚水潭成立于2014年1月,创始人兼CEO骆海东拥有超过二十年传统 及电商ERP的研发和实施部署经验,公司核心管理团队来自于阿里巴 巴、亚马逊、中国平安和麦包包等知名公司。 聚水潭创建之初,以电商SaaS ERP切入市场,凭借出色的产品和服务, 快速获得市场领先地位。随着客户需求的不断变化,如今聚水潭已经 发展成为以SaaS0 码力 | 7 页 | 547.94 KB | 1 年前3
Greenplum Database 管理员指南 6.2.1............................................................................. - 263 - 第十二章:安装部署与初始化 .............................................................................................. - 265 ......................... - 284 - 初始化 GP 数据库集群 ................................................................................................... - 285 - 创建初始化网络端口文件 ............................... 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 8 - 创建初始化配置文件 .............................................................................................. - 286 - 执行初始化操作 ........................................0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum 精粹文集模式就是可以支持 Scale-out 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 的轮子跑的更快更稳才是我们的最终目标。而数据库底层组件就像 车轮一样,经过几十年磨砺,数据库引擎技术已经非常成熟,大可 不必去重新设计开发,而且把数据库底层交给其它专业化组织来开 发(对应到 Postgresql 就是社区),还可充分利用到社区的源源不 断的创新能力和资源,让产品保持持续旺盛的生命力。 这也是我们在用户选型时,通常建议用户考察一下底层的技术支撑 是不是有好的组织和社区支持的原因,如果缺乏这方面的有力支持 分析型方面来考察,以下几点 Postgresql 确实胜出一筹。 Big Date2.indd 4 16-11-22 下午3:38 Greenplum 精粹文集 5 1) PG 有非常强大 SQL 支持能力和非常丰富的统计函数和统计语法 支持,除对 ANSI SQL 完全支持外,还支持比如分析函数(SQL2003 OLAP window 函数),还可以用多种语言来写存储过程,对于 Madlib、R 的支持也很好。这一点上0 码力 | 64 页 | 2.73 MB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum........................................................................................... 8 构筑云化基座 ................................................................................................. 析数据平台 Greenplum,用实践证明了 Greenplum 与支持多样性计算的欧拉开源操作系统完全兼容,是 Greenplum 与中国本地 IT 厂商的深入合作的典型模板,大大丰富了中国本地国产化应用生态。本白皮书着眼介绍了欧拉开源操作系 统平台架构、创新性及核心特点, 同时介绍了 Greenplum 作为一款深受技术爱好者喜爱的、中立的纯开源软件,践行 “Run Everywhere”原 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源操作系统是一款面向数字基础设施的操作系统,支持服务器、云计算、边缘计算、嵌入式等应用场景,支持多 样性计算,致力于提供安全、稳定、易用的操作系统。 Greenplum0 码力 | 17 页 | 2.04 MB | 1 年前3
并行不悖- OLAP 在互联网公司的实践与思考未来的数据 —— 趋势分析 Ø非实时,离线+在线流系统,趋势分析 Ø算法分析,持续计算 5 数据仓库体系架构 OLAP场景举例 • 业务相关场景 Ø用户状态 (注册数,活跃数,并发量,峰值) Ø金币状态 Ø道具/物品状态 Ø对账状态 Ø活动反馈 • 架构相关场景 Ø不同数据量,不同事务特点,不同查询需求 Ø历史数据归档与冷热分离 Ø实时与延时需求的权衡 6 数据仓库体系架构 数据流转过程 greenplum的体系结构 14 greenplum体系架构 greenplum的体系结构 • greenplum的架构特点 Ø MPP ShareNothing 海量并行处理+完全无共享 Ø cpu计算能力 Ø 数据从Disk上的I/O吞吐性能 Ø master管理节点 Ø segment数据节点 • greenplum的核心功能 Ø 无共享MPP Ø 多态存储 Ø 高效数据加载 (gpfdist+外部表,每小时4TB+) Greenplum运维体系 环境创建与部署 • 部署流程 Ø 规划部署方案 Ø 准备硬件资源 Ø 修改系统参数 Ø 安装 Greenplum 软件 / postgresql软件 Ø 初始化实例 Ø 修改实例参数文件 Ø 初始化业务所需库表环境、用户环境 Ø 加载数据 Ø 业务程序访问 23 Greenplum运维体系 环境创建与部署 • 部署注意点 Ø 资源要充足(ETL,管理节点,数据节点,数据集市)0 码力 | 43 页 | 9.66 MB | 1 年前3
Greenplum数据仓库UDW - UCloud中立云计算服务商客户端⼯具访问UDW udw⽀持按照postgresql的客⼾端来访问udw,⽀持udw客⼾端访问,还可以⽀持jdbc、odbc、php、python、psql等⽅式来访问udw。另外,也可以通过图形化的SQL Workbench/J、 Navicat等⼯具来访问udw。 1.1 psql客户端⽅式访问 客户端⽅式访问 下载psql客⼾端 yum install postgresql.x86_64 开发指南 开发指南 1、连接数据库 、连接数据库 udw ⽀持按照 postgresql ⽅式来访问 udw,可以⽀持 jdbc、odbc、php、python、psql 等⽅式来访问 udw。图形化的 pgAdmin、SQL Workbench/J 等⼯具 1.1 psql 客户端⽅式访问 客户端⽅式访问 下载 psql 客⼾端(或者通过控制台下载 udw 客⼾端) yum install BY(key))和随机分布(DISTRIBUTED RANDOMLY)。如果不指定分布策略则默认按primary key或者第⼀个column 做哈希分布。 为了尽可能的并⾏处理数据,需要选择能够最⼤化地将数据均匀分布到所有计算节点的策略,⽐如选择 primary key;分布式处理中将会存在本地和分布式协作的操作,当不同的表使⽤相 同的分布键的时候,⼤部分的排序、连接关联操作⼯作将会在本地完成,0 码力 | 206 页 | 5.35 MB | 1 年前3
Greenplum 介绍品。 Greenplum 基于 MPP(大规模并行处理)架构构建,具有良好的弹性和线性扩展能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台, Greenplum 载的复杂 性,和其带来的数据不一致的问题。 ● 支持各种数据格式的平台:不管是结构化、半结构化(XML、JSON、KV)还是非结构化, 譬如文本数据、GIS 数据、图数据等。 ● 具有强大内核的平台:Greenplum 具有强大的内核技术,包括数据水平分布、并行查询执 行、专业优化器、线性扩展能力、多态存储、资源管理、高可用、高速数据加载等。 ● 具备强大灵活性和可扩展性的平台: 、SAS、Talend、Qlik、Tableau、Anaconda、 Microstrategy、Boundless、Zattset、Datometry 等,涵盖 ETL、商业智能、高级分析、可视化、 集成分析、GIS 数据处理、迁移、安全和管理等各个领域。 更多信息请访问 greenplum.cn。0 码力 | 3 页 | 220.42 KB | 1 年前3
Greenplum机器学习⼯具集和案例Greenplum ⼤大数据平台 • 一次打包,到处运行:裸机、私有云、公有云 • 各种数据源:Hadoop、S3、数据库、文件、Spark、Ka,a • 各种数据格式:结构化、半结构化(JSON/XML/Hstore)、非结构化 • 强大内核: MPP、优化器、多态存储、灵活分区、高速加载、PG内核 • 强大的灵活性、可扩展:PL/X、Extension、PXF、外部表机制 • 完善的标准支持:SQL、JDBC、ODBC foo DISTRIBUTED BY (id); 2017.thegiac.com 2017.thegiac.com • 适合模型应用于数据子集的场景,并行执行效率非常高 • 如果节点间数据通讯,使用 适⽤用场景 2017.thegiac.com MADlib 2017.thegiac.com 强⼤大的分析能⼒力力 ● 机器器学习 ● 图形分析 历史回顾 2017.thegiac.com 金融 保险 医疗 汽车 制造 科研 政府机构 互联网 娱乐和媒体 零售 MADlib ⽤用户和场景 2017.thegiac.com 功能 Data Types and TransformaJons Array and Matrix Operations Matrix FactorizaDon0 码力 | 58 页 | 1.97 MB | 1 年前3
Greenplum 分布式数据库内核揭秘Greenplum 是基于 PostgreSQL 所实现的大规模并行处理(MPP)开源数据平台,具有良好的弹性 和线性拓展能力,内置并行存储、并行通信、并行计算和并行优化功能,兼容 SQL 标准。拥有独 特的高效的 ORCA 优化器,具有强大、高效的 PB 级数据存储、处理和实时分析能力,同时支持 OLTP 型业务的混合负载。 Greenplum 分布式数据库简介 5 Confidential │ ©2021 Hash/Randomly/Replicated Confidential │ ©2021 VMware, Inc. 8 数据存储分布化是分布式数据库要解决的第一个问题。 通过将海量数据分散到多个节点上,一方面大大降低了单个节点处理的数据量,另一方面也为处理 并行化奠定了基础,两者结合起来可以极大的提高系统的性能。譬如在 100 个节点的集群上,每 个节点仅保存总数据量的 1/100,100 个节0 码力 | 31 页 | 3.95 MB | 1 年前3
共 26 条
- 1
- 2
- 3













