积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(29)Pandas(29)

语言

全部英语(29)

格式

全部PDF文档 PDF(29)
 
本次搜索耗时 0.723 秒,为您找到相关结果约 29 个.
  • 全部
  • 云计算&大数据
  • Pandas
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25

    New in version 0.20.0. The replace method also accepts a compiled regular expression object from re.compile() as a pattern. All 466 Chapter 4. User Guide pandas: powerful Python data analysis toolkit, be included in the compiled regular expression object. In [37]: import re In [38]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE) In [39]: s3.str.replace(regex_pat, 'XX-XX ') Out[39]: 0 A 1
    0 码力 | 698 页 | 4.91 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    object from re.compile() as a pattern. All flags should be included in the compiled regular expression object. New in version 0.20.0. In [35]: import re In [36]: regex_pat = re.compile(r'^.a|dog', flags=re replace(pat, repl) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') Release 0.20.3 Returns is_regex : bool Whether obj is a regex pattern. Examples >>> is_re(re.compile(".*")) True >>> is_re("foo") False 34.16.4.41 pandas.api.types.is_re_compilable pandas.api.types
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.2

    object from re.compile() as a pattern. All flags should be included in the compiled regular expression object. New in version 0.20.0. In [35]: import re In [36]: regex_pat = re.compile(r'^.a|dog', flags=re Python data analysis toolkit, Release 0.20.2 Using a compiled regex with flags >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') object to check. Returns is_regex : bool Whether obj is a regex pattern. Examples >>> is_re(re.compile(".*")) True >>> is_re("foo") False 34.16.4.41 pandas.api.types.is_re_compilable pandas.api.types
    0 码力 | 1907 页 | 7.83 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.21.1

    object from re.compile() as a pattern. All flags should be included in the compiled regular expression object. New in version 0.20.0. In [35]: import re In [36]: regex_pat = re.compile(r'^.a|dog', flags=re Python data analysis toolkit, Release 0.21.1 Using a compiled regex with flags >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') functions 2011 pandas: powerful Python data analysis toolkit, Release 0.21.1 Examples >>> is_re(re.compile(".*")) True >>> is_re("foo") False 34.19.4.41 pandas.api.types.is_re_compilable pandas.api.types
    0 码力 | 2207 页 | 8.59 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.2

    regular expression object from re.compile() as a pattern. All flags should be included in the compiled regular expression object. In [57]: import re In [58]: regex_pat = re.compile(r"^.a|dog", flags=re.IGNORECASE) regex=True) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar' expand=True) 0 1 0 foojpgbar A compiled regex can be passed as pat >>> import re >>> s.str.split(re.compile(r"\.jpg"), expand=True) 0 1 0 foojpgbar When regex=False, pat is interpreted as the string itself
    0 码力 | 3739 页 | 15.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.4

    regular expression object from re.compile() as a pattern. All flags should be included in the compiled regular expression object. In [57]: import re In [58]: regex_pat = re.compile(r"^.a|dog", flags=re.IGNORECASE) regex=True) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar' expand=True) 0 1 0 foojpgbar A compiled regex can be passed as pat >>> import re >>> s.str.split(re.compile(r"\.jpg"), expand=True) 0 1 0 foojpgbar When regex=False, pat is interpreted as the string itself
    0 码力 | 3743 页 | 15.26 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    regular expression object from re.compile() as a pattern. All flags should be included in the compiled regular expression object. In [52]: import re In [53]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE) repl) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') object to check] Returns is_regex [bool] Whether obj is a regex pattern. Examples >>> is_re(re.compile(".*")) True >>> is_re("foo") False pandas.api.types.is_re_compilable pandas.api.types.is_re_compilable(obj)
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    regular expression object from re.compile() as a pattern. All flags should be included in the compiled regular expression object. In [37]: import re In [38]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE) repl) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') object to check] Returns is_regex [bool] Whether obj is a regex pattern. Examples >>> is_re(re.compile(".*")) True >>> is_re("foo") False 6.15. General utility functions 2143 pandas: powerful Python
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    regular expression object from re.compile() as a pattern. All flags should be included in the compiled regular expression object. In [37]: import re In [38]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE) repl) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') object to check] Returns is_regex [bool] Whether obj is a regex pattern. Examples >>> is_re(re.compile(".*")) True >>> is_re("foo") False 6.15. General utility functions 2143 pandas: powerful Python
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0

    regular expression object from re.compile() as a pattern. All flags should be included in the compiled regular expression object. In [52]: import re In [53]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE) repl) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') object to check] Returns is_regex [bool] Whether obj is a regex pattern. Examples >>> is_re(re.compile(".*")) True >>> is_re("foo") False pandas.api.types.is_re_compilable pandas.api.types.is_re_compilable(obj)
    0 码力 | 3091 页 | 10.16 MB | 1 年前
    3
共 29 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
pandaspowerfulPythondataanalysistoolkit0.250.200.211.41.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩