pandas: powerful Python data analysis toolkit - 1.0.0c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] nan, 44, 55, 77, 99], ...: 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12], ...: 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99, np.nan, ...: np.nan]}) ...: by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. match / %in%0 码力 | 3015 页 | 10.78 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.1c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] nan, 44, 55, 77, 99], ...: 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12], ...: 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99, np.nan, ...: np.nan]}) ...: by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. match / %in%0 码力 | 3231 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.0c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] nan, 44, 55, 77, 99], ...: 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12], ...: 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99, np.nan, ...: np.nan]}) ...: by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. match / %in%0 码力 | 3229 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] "by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, ˓→12], ...: "by2": [ ...: "wet", ...: "dry", ...: 99, ...: 95, ...: np.nan, ...: "damp", ...: 95, ...: 99, ...: "red", ...: by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. match / %in%0 码力 | 3509 页 | 14.01 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.3c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] "by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12], ...: "by2": [ ...: "wet", ...: "dry", ...: 99, ...: 95, ...: np.nan, ...: "damp", ...: 95, ...: 99, ...: "red", ...: 99 by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. 1.4. Tutorials0 码力 | 3603 页 | 14.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.4c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] "by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12], ...: "by2": [ ...: "wet", ...: "dry", ...: 99, ...: 95, ...: np.nan, ...: "damp", ...: 95, ...: 99, ...: "red", ...: 99 by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. match / %in%0 码力 | 3605 页 | 14.68 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.2.3c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] "by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, ˓→12], ...: "by2": [ ...: "wet", ...: "dry", ...: 99, ...: 95, ...: np.nan, ...: "damp", ...: 95, ...: 99, ...: "red", ...: by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. match / %in%0 码力 | 3323 页 | 12.74 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.2.0c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] "by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, ˓→12], ...: "by2": [ ...: "wet", ...: "dry", ...: 99, ...: 95, ...: np.nan, ...: "damp", ...: 95, ...: 99, ...: "red", ...: by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. match / %in%0 码力 | 3313 页 | 10.91 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] nan, 44, 55, 77, 99], ...: 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12], ...: 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99, np.nan, ...: np.nan]}) ...: by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. 174 Chapter0 码力 | 3091 页 | 10.16 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.4c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")] nan, 44, 55, 77, 99], ...: 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12], ...: 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99, np.nan, ...: np.nan]}) ...: by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation. match / %in%0 码力 | 3081 页 | 10.24 MB | 1 年前3
共 28 条
- 1
- 2
- 3













