积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(46)OpenShift(46)

语言

全部中文(简体)(44)英语(2)

格式

全部PDF文档 PDF(46)
 
本次搜索耗时 0.085 秒,为您找到相关结果约 46 个.
  • 全部
  • 云计算&大数据
  • OpenShift
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OpenShift Container Platform 4.10 虚拟化

    OpenShift Data Foundation 部署 OpenShift Virtualization 时,您必须为 Windows 虚 拟机磁盘创建一个专用存储类。详情请参阅为 Windows 虚拟机优化 ODF PersistentVolume。 您可以将 OpenShift Virtualization 与 OVN-Kubernetes、OpenShiftSDN或认证的 OpenShift CNI OpenShift Data Foundation 部署 OpenShift Virtualization,您必 须为 Windows 虚拟机磁盘创建一个专用存储类。详情请参阅为 Windows 虚拟机优化 ODF PersistentVolume。 操作系 操作系统 统要求 要求 在 worker 节点上安装的 Red Hat Enterprise Linux CoreOS(RHCOS) 注意 clusterrole 的 RBAC 定义: 6.3. 其他资源 管理安全性上下文约束 使用 RBAC 定义和应用权限 Red Hat Enterprise Linux (RHEL)文档中的优化虚拟机网络性能 在虚拟机中使用巨页 RHEL 文档中的配置巨页 $ oc get scc kubevirt-controller -o yaml $ oc get clusterrole kubevirt-controller
    0 码力 | 307 页 | 3.45 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.13 虚拟化

    OpenShift Data Foundation 部署 OpenShift Virtualization 时,您必须为 Windows 虚 拟机磁盘创建一个专用存储类。详情请参阅为 Windows 虚拟机优化 ODF PersistentVolume。 您可以将 OpenShift Virtualization 与 OVN-Kubernetes、OpenShift SDN 或 认证的 OpenShift OpenShift Data Foundation 部署 OpenShift Virtualization,您必须为 Windows 虚拟机磁盘创建一个专用存储类。详情请参阅为 Windows 虚拟机优化 ODF PersistentVolume。 使用带有块存储设备的逻辑卷管理 (LVM) 的虚拟机需要额外的配置,以避免与 Red Hat Enterprise Linux CoreOS (RHCOS) OpenShift Data Foundation 部署 OpenShift Virtualization,您必 须为 Windows 虚拟机磁盘创建一个专用存储类。详情请参阅为 Windows 虚拟机优化 ODF PersistentVolume。 操作系 操作系统 统要求 要求 在 worker 节点上安装的 Red Hat Enterprise Linux CoreOS(RHCOS) 注意
    0 码力 | 393 页 | 4.53 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.14 发行注记

    念,并添加了新功能。 在 OpenShift Container Platform 4.14 中 OLM 1.0 的技术预览阶段,管理员可以探索以下功能: 支持 支持 GitOps 工作流的全声明性模型 工作流的全声明性模型 第 第 1 章 章 OPENSHIFT CONTAINER PLATFORM 4.14 发 发行注 行注记 记 21 OLM 1.0 通过两个 API 简化了 Operator 管理: 在这个版本中,您可以更好地控制 pod 的 C-states。现在,您可以为 C-states 指定最大延迟,而不是完 全禁用 C-states。您可以在 cpu-c-states.crio.io 注解中配置这个选项。这有助于优化高优先级应用程序 中的节能功能,方法是启用一些 shouldower C-states 而不是完全禁用它们。有关控制 pod C-states 的更 多信息,请参阅可选:节能配置。 1.3.21.4 中。 改 改进 进了使用 了使用 Open Virtual Network (OVN) 优 优化的 化的扩 扩展和 展和稳 稳定性 定性 OpenShift Container Platform 4.14 引入了对 Open Virtual Network Kubernetes (OVN-K) 的优化,其内 部架构被修改,以减少操作延迟,以消除网络 control plane 扩展和性能。网络流数据现在本地化到集群节
    0 码力 | 73 页 | 893.33 KB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.10 架构

    Container Platform 功能,允许从其 data plane 和 worker 在 OpenShift Container Platform 集群上托管 control plane。这个模型执行以下操作: 优化 control plane 所需的基础架构成本。 改进集群创建时间。 启用使用 Kubernetes 原生高级别元语托管 control plane。例如,部署有状态的集合。 在 control controller)是另一种特殊资产,用于指示一次需要运行多少个 pod 副本。您可以使用此功能来自 动扩展应用程序,以适应其当前的需求。 短短数年,Kubernetes 已在大量的云和本地环境中被采用。借助开源开发模型,拥护和可以通过为组件 (如网络、存储和身份验证)实施不同的技术来扩展 Kubernetes 的功能。 2.1.2. 容器化应用程序的好处 与使用传统部署方法相比,使用容器化应用程序具有许多优势。过去应用程序要安装到包含所有依赖项的 Linux 操作系统。它们的文件系统、网络、cgroups、进程表和命名空间与 主机 Linux 系统分开,但容器可以在必要时与主机无缝集成。容器以 Linux 为基础,因此可以利用快速创 新的开源开发模型带来的所有优势。 因为每个容器都使用专用的操作系统,所以您能够在同一主机上部署需要冲突软件依赖项的不同应用程 序。每个容器都带有各自的依赖软件,并且管理自己的接口,如网络和文件系统,因此应用程序无需争用
    0 码力 | 63 页 | 1.40 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.8 日志记录

    OpenShift Logging Bug Fix 5.3.2 1.21.1. 程序错误修复 在此次更新之前,因为解析错误,Elasticsearch 会拒绝来自事件路由器的日志。在这个版本中, 更改了数据模型来解决这个问题。但是,以前的索引可能会导致 Kibana 中的警告或错 误。kubernetes.event.metadata.resourceVersion 字段会导致错误,直到删除现有索引被删除 章 LOGGING 发 发行注 行注记 记 41 1.32.1. 程序错误修复 在此次更新之前,因为解析错误,Elasticsearch 会拒绝来自事件路由器的日志。在这个版本中, 更改了数据模型来解决这个问题。但是,以前的索引可能会导致 Kibana 中的警告或错 误。kubernetes.event.metadata.resourceVersion 字段会导致错误,直到删除现有索引被删除 实例。(LOG-1022) 在这个版本中,您可以收集 OVN 网络策略审计日志来转发到日志记录服务器。(LOG-1526) 默认情况下,OpenShift Container Platform 4.5 中引入的数据模型为来自不同命名空间的日志提 供一个通用索引。这个变化造成很难看到哪些命名空间生成的日志最多。 当前发行版本在 OpenShift Container Platform 控制台中的 Logging 仪表板中添加命名空间指
    0 码力 | 223 页 | 2.28 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.2 架构

    controller)是另一种特殊资产,用于指示一次需要运行多少个 Pod 副本。您可以使用此功能来自 动扩展应用程序,以适应其当前的需求。 短短数年,Kubernetes 已在大量的云和本地环境中被采用。借助开源开发模型,拥护和可以通过为组件 (如网络、存储和身份验证)实施不同的技术来扩展 Kubernetes 的功能。 1.1.2. 容器化应用程序的好处 与使用传统部署方法相比,使用容器化应用程序具有许多优势。过去应用程序要安装到包含所有依赖项的 Linux 操作系统。它们的文件系统、网络、cgroups、进程表和命名空间与 主机 Linux 系统分开,但容器可以在必要时与主机无缝集成。容器以 Linux 为基础,因此可以利用快速创 新的开源开发模型带来的所有优势。 因为每个容器都使用专用的操作系统,所以您能够在同一主机上部署需要冲突软件依赖项的不同应用程 序。每个容器都带有各自的依赖软件,并且管理自己的接口,如网络和文件系统,因此应用程序无需争用 中的主要组件源自 Red Hat Enterprise Linux 和 相关的红帽技术。OpenShift Container Platform 得益于红帽企业级优质软件的严格测试和认证 计划。 开源开发模型。开发以开放方式完成,源代码可从公共软件存储库中获得。这种开放协作促进了 快速创新和开发。 虽然 Kubernetes 擅长管理应用程序,但它并未指定或管理平台级要求或部署过程。强大而灵活的平台管
    0 码力 | 32 页 | 783.33 KB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 3.11 扩展和性能指南

    . . . . . . . . 目 目录 录 第 第 1 章 章 概述 概述 第 第 2 章 章 推荐的安装 推荐的安装实 实践 践 2.1. 预安装依赖项 2.2. ANSIBLE 安装优化 2.3. 网络注意事项 第 第 3 章 章 推荐的主机 推荐的主机实 实践 践 3.1. OPENSHIFT CONTAINER PLATFORM MASTER 主机的推荐做法 3.2. OPENSHIFT 使用 TUNED 配置集扩展主机 第 第 4 章 章 优 优化 化计 计算 算资 资源 源 4.1. 过量使用 4.2. 镜像注意事项 4.2.1. 使用预部署的镜像提高效率 4.2.2. 预拉取镜像 4.3. 使用 RHEL 工具容器镜像进行调试 4.4. 使用基于 ANSIBLE 的健康检查进行调试 第 第 5 章 章 优 优化持久性存 化持久性存储 储 5.1. 概述 5.2. 常规存储指南 Overlay2 图形驱动程序 第 第 6 章 章 优 优化 化临时 临时存 存储 储 6.1. 概述 6.2. 常规存储指南 第 第 7 章 章 网 网络优 络优化 化 7.1. 优化网络性能 7.1.1. 为您的网络优化 MTU 7.2. 配置网络子网 7.3. 优化 IPSEC 第 第 8 章 章 路由 路由优 优化 化 8.1. 扩展 OPENSHIFT CONTAINER
    0 码力 | 58 页 | 732.06 KB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.3 架构

    controller)是另一种特殊资产,用于指示一次需要运行多少个 Pod 副本。您可以使用此功能来自 动扩展应用程序,以适应其当前的需求。 短短数年,Kubernetes 已在大量的云和本地环境中被采用。借助开源开发模型,拥护和可以通过为组件 (如网络、存储和身份验证)实施不同的技术来扩展 Kubernetes 的功能。 1.1.2. 容器化应用程序的好处 与使用传统部署方法相比,使用容器化应用程序具有许多优势。过去应用程序要安装到包含所有依赖项的 Linux 操作系统。它们的文件系统、网络、cgroups、进程表和命名空间与 主机 Linux 系统分开,但容器可以在必要时与主机无缝集成。容器以 Linux 为基础,因此可以利用快速创 新的开源开发模型带来的所有优势。 因为每个容器都使用专用的操作系统,所以您能够在同一主机上部署需要冲突软件依赖项的不同应用程 序。每个容器都带有各自的依赖软件,并且管理自己的接口,如网络和文件系统,因此应用程序无需争用 中的主要组件源自 Red Hat Enterprise Linux 和 相关的红帽技术。OpenShift Container Platform 得益于红帽企业级优质软件的严格测试和认证 计划。 开源开发模型。开发以开放方式完成,源代码可从公共软件存储库中获得。这种开放协作促进了 快速创新和开发。 虽然 Kubernetes 擅长管理应用程序,但它并未指定或管理平台级要求或部署过程。强大而灵活的平台管
    0 码力 | 47 页 | 1.05 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.14 Operator

    这些工具可组合使用,因此您可自由选择对您有用的工具。 2.1.3. Operator 成熟度模型 Operator 内部封装的管理逻辑的复杂程度各有不同。该逻辑通常还高度依赖于 Operator 所代表的服务类 型。 对于大部分 Operator 可能包含的特定功能集来说,可以大致推断出 Operator 封装操作的成熟度等级。就 此而言,以下 Operator 成熟度模型针对 Operator 的第二天通用操作定义了五个成熟度阶段: 的第二天通用操作定义了五个成熟度阶段: 图 2.1. Operator 成熟度模型 成熟度模型 以上模型还显示了如何通过 Operator SDK 的 Helm、Go 和 Ansible 功能更好地开发这些功能。 2.2. OPERATOR FRAMEWORK 打包格式 本指南概述了 OpenShift Container Platform 中 Operator Lifecycle Manager (OLM) 所支持的 Operator CSV 拥有自定义资源定义(CRD),则该 CRD 必须存在于捆绑包中。 2.2.1.1. 清 清单 捆绑包清单指的是一组 Kubernetes 清单,用于定义 Operator 的部署和 RBAC 模型。 捆绑包包括每个目录的一个 CSV,一般情况下,用来定义 CRD 所拥有的 API 的 CRD 位于 /manifest 目 录中。 捆绑包格式布局示例 包格式布局示例 额外支持的 外支持的对象
    0 码力 | 423 页 | 4.26 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.7 架构

    controller)是另一种特殊资产,用于指示一次需要运行多少个 pod 副本。您可以使用此功能来自 动扩展应用程序,以适应其当前的需求。 短短数年,Kubernetes 已在大量的云和本地环境中被采用。借助开源开发模型,拥护和可以通过为组件 (如网络、存储和身份验证)实施不同的技术来扩展 Kubernetes 的功能。 2.1.2. 容器化应用程序的好处 与使用传统部署方法相比,使用容器化应用程序具有许多优势。过去应用程序要安装到包含所有依赖项的 Linux 操作系统。它们的文件系统、网络、cgroups、进程表和命名空间与 主机 Linux 系统分开,但容器可以在必要时与主机无缝集成。容器以 Linux 为基础,因此可以利用快速创 新的开源开发模型带来的所有优势。 因为每个容器都使用专用的操作系统,所以您能够在同一主机上部署需要冲突软件依赖项的不同应用程 序。每个容器都带有各自的依赖软件,并且管理自己的接口,如网络和文件系统,因此应用程序无需争用 Red Hat Enterprise Linux(RHEL) 和相关的红帽技术。OpenShift Container Platform 得益于红帽企业级优质软件 的严格测试和认证计划。 开源开发模型。开发以开放方式完成,源代码可从公共软件存储库中获得。这种开放协作促进了 快速创新和开发。 虽然 Kubernetes 擅长管理应用程序,但它并未指定或管理平台级要求或部署过程。强大而灵活的平台管
    0 码力 | 55 页 | 1.16 MB | 1 年前
    3
共 46 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
OpenShiftContainerPlatform4.10虚拟虚拟化4.134.14发行注记架构4.8日志记录4.23.11扩展性能指南4.3Operator4.7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩