积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(75)机器学习(75)

语言

全部中文(简体)(50)英语(25)

格式

全部PDF文档 PDF(75)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 75 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    need to use tokenizer.apply_chat_template() to format your inputs as shown␣ �→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about large language messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about large language models."}, ] ) print("Chat response:", chat_response) 1.2.3 下一步 现在,您可以尽情探索
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    Supervised Learning https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d Massive Unlabeled data Unsupervised Learning https://medium.com/intuitionmachine/predictive-lear com/applied-deep-learning-part-3-autoencoders- 1c083af4d798 https://towardsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-part-1- autoencoder-d9a5f8795af4 How to Train? PCA V.S. Auto-Encoders e.com/a-wizards-guide-to-adversarial-autoencoders-part-2- exploring-latent-space-with-adversarial-2d53a6f8a4f9 Adversarial AutoEncoders ▪ Give more details after GAN https://towardsdatascience.com/
    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    Faces in the Wild�����������������99.63%� ������������������������������ Schroff, F., Kalenichenko, D. and Philbin, J., 2015. Facenet: A unified embedding for face recognition and clustering. In Proceedings ������ – �� ������ – KYC ���� A����� ���� ���� ���� ����� ������������D��� ��e� ��e� ������� �e������������� �������� ������������D��� ���� ���������������� �������� ���������������� �������� ��������P���e��� LFW.Labeled Face in the Wild/ LFW �t������i 6000 �����h�����vh�i 300 �u��300 ���� ���ha��c��d����t���LFW���s�d�����p� 2013�:�����������f�������l��+�c��� 2014�:����������c��� 2014��s��c��+���.����tw����/e�������������
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    embedding for each animal, where each feature represents one dimension, we can represent the animals on a 2-D plot. The feature cute can be 2 These feature values are hand-picked based on what we thought was reasonable as intended. For example, in Figure 4-10, we visually verify that the closest points to ‘king’ in 2-D are ‘kingdom’, ‘crown’, ‘archbishop’, and so on. These are all very relevant, and it passes the sanity different words. Figure 4-10: Using the embedding projector tool to visualize the word2vec embeddings in 3-D. Now that we have trained the embeddings, in the next section, let’s learn to use them to improve deep
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    2016.6 – 2017.5 香港中文大学 Research Fellow 2017.5 – 现在 腾讯优图X-Lab 视觉AI负责人,专家研究员 个人主页:http://xiaoyongshen.me/ Google Scholar: https://scholar.google.com/citations?user=P eMuphgAAAAJ&hl=en 看得更清,看得更懂 目录 1. 夜景增强 ???0 ???????????? ME ????????????????????????→0 Sub-pixel Motion Compensation (SPMC) Layer Our Method 47 ???????????????????????? ???????????? ????????????0 ???????????? ME ????????????????? Detail Fusion Net Our Method 48 ???????????????????????? ???????????? ????????????0 ???????????? ME ????????????????????????→0 SPMC Encoder Decoder ConvL STM ???????????? = ???????????? − 1 ????
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    Chapter 6 - Advanced Learning Techniques “Tell me and I forget, teach me and I may remember, involve me and I learn.” – Benjamin Franklin This chapter is a continuation of Chapter 3, where we introduced
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 37. 什么是卷积

    -step-1- convolution-operation/ Convolution Convolution CNN on feature maps https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 下一课时 卷积神经网络 Thank You.
    0 码力 | 18 页 | 1.14 MB | 1 年前
    3
  • pdf文档 13. 杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用

    后续工作 结合温度预测模型对空调进行节能控制 ⚫ 利用温度预测模型实现强化学习节能控制 • 强化学习探索策略的制定 • 强化学习模拟实验环境 项目数据及源代码地址: http://uee.me/cu9GV THANK YOU momodel.ai
    0 码力 | 17 页 | 2.49 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    嵌入到Spark计算框架里,方便打通 数据流 实现了一种新的Yarn Applica\on,可 以与TensorFlow灵活整合和功能定制 代码量几百行 代码量几千行 About Me Yuance.Li 15201453364 liyuance@{360
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    popular with other users at that time, and so on. If you have seen ‘The Office’ many times over like me, there are chances you might like ‘Seinfeld’ too, which might be popular with other users too. If we
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
共 75 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
AI模型千问qwen中文文档深度学习PyTorch入门实战54AutoEncoder编码码器编码器TensorFlow快速人脸识别人脸识别EfficientDeepLearningBookEDLChapterArchitectures图像视频处理技术沈小勇AdvancedTechniquesTechnicalReview37什么卷积13杨赛赛基于多维时间序列预测数据数据机房中应用onYarn遇上Introduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩