积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(68)机器学习(68)

语言

全部中文(简体)(42)英语(26)

格式

全部PDF文档 PDF(68)
 
本次搜索耗时 0.053 秒,为您找到相关结果约 68 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    world, we must automate the embedding table generation because of the high costs associated with manual embeddings. One example of an automated embedding generation technique is the word2vec family of Kharameh"," Mahmudabad (Persian:دﺎﺑادﻮﻤﺤﻣ also Romanized as Maḩmūdābād; also known as Maḩbūdābād-e Pā’īn Mahmood Abad Hoomeh Maḩmūdābād-e Ḩūmeh and Maḩmūdābād-e Pā’īn) is a village in Korbal Rural District in E., & Johnson, M. (2021). Distilling Large Language Models into Tiny and Effective Students using pQRNN. arXiv preprint arXiv:2101.08890. 15 Chung, H. W., Fevry, T., Tsai, H., Johnson, M., & Ruder, S.
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    greater x.le/x.gt np.greater_equal/np.equal/np.not_equal x.ge/x.eq/x.ne 随机种子 np.random.seed torch.manual_seed 1.Tensors张量的概念 10  Python、PyTorch 1.x与TensorFlow2.x的比较 类别 Python PyTorch 1+ TensorFlow 参考文献 1. IAN GOODFELLOW等,《深度学习》,人民邮电出版社,2017 2. Andrew Ng,http://www.deeplearning.ai 3. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag, 2006 4. 李宏毅,《一天搞懂深度学习》 5. 吴茂
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    performance drop for GNMT training ‣ On Volta: ‣ Up to 20% performance drop for Tacotron training. ‣ Manual synchronization is required in CUDA graphs workloads between graph replays. ‣ The PyTorch container 21.04: ‣ On NVIDIA Ampere Architecture GPUs: ‣ Up to 17% performance drop for VGG16 training ‣ Manual synchronization is required in CUDA graphs workloads between graph replays. ‣ The DLProf TensorBoard Up to 20% performance drop in MaskRCNN training ‣ Up to 15% performance drop in VGG16 training ‣ Manual synchronization is required in CUDA graphs workloads between graph replays. ‣ The DLProf TensorBoard
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    clear_session keras.backend.clear_session() 销毁当前的 TF 图并创建一个新图。 有用于避免旧模型/网络层混乱。 manual_variable_initialization keras.backend.manual_variable_initialization(value) 设置变量手动初始化的标志。 这个布尔标志决定了变量是否应该在实例化时初始化(默认),或者用户是否应该自己处理 用 PEP8 linter: • 安装 PEP8 包:pip install pep8 pytest-pep8 autopep8 • 运行独立的 PEP8 检查:py.test --pep8 -m pep8 • 你可以通过运行这个命令自动修复一些 PEP8 错误: autopep8 -i --select 例如:autopep8 -i --select
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    practitioners have to do. Apart from saving humans time, it also helps by reducing the bias that manual decisions might introduce when designing efficient networks. Automation techniques can help improve Automated Hyper-Param Optimization (HPO) is one such technique that can be used to replace / supplement manual tweaking of hyper-parameters like learning rate, regularization, dropout, etc. This relies on search
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    23 1.8 参考文献 [1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou w_current, points, lr): # 计算误差函数在所有点上的导数,并更新 w,b b_gradient = 0 w_gradient = 0 M = float(len(points)) # 总样本数 for i in range(0, len(points)): x = points[i, 0] 2(wx+b-y),参考公式(2.3) b_gradient += (2/M) * ((w_current * x + b_current) - y) # 误差函数对 w 的导数:grad_w = 2(wx+b-y)*x,参考公式(2.2) w_gradient += (2/M) * x * ((w_current * x + b_current) - y)
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    out gradients after each update • t.grad.zero_() *Assume 't' is a tensor Autograd (continued) • Manual Weight Update - example Optimizer • Optimizers (optim package) • Adam, Adagrad, Adadelta, SGD etc
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    September 27, 2023 33 / 122 Warm Up (Contd.) Given a set of training data D = {x(i), y(i)}i=1,··· ,m The training data are sampled in an i.i.d. manner The probability of the i-th training data (x(i), P(D) = m � i=1 pX|Y (x(i) | y (i))pY (y (i)) Feng Li (SDU) GDA, NB and EM September 27, 2023 34 / 122 Warm Up (Contd.) Log-likelihood function ℓ(θ) = log m � i=1 pX,Y (x(i), y(i)) = log m � i=1 i=1 pX|Y (x(i) | y(i))pY (y(i)) = m � i=1 � log pX|Y (x(i) | y(i)) + log pY (y(i)) � where θ = {pX|Y (x | y), pY (y)}x,y Feng Li (SDU) GDA, NB and EM September 27, 2023 35 / 122 Warm Up (Contd.)
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    µ1)T Σ−1(x − µ1) � (7) Given m sample data {(x(i), y(i))}i=1,··· ,m, the log-likelihood is defined as ℓ(ψ, µ0, µ1, Σ) = log m � i=1 pX,Y (x(i), y(i); ψ, µ0, µ1, Σ) = log m � i=1 pX|Y (x(i) | y(i); µ0 µ0, µ1, Σ)pY (y(i); ψ) = m � i=1 log pX|Y (x(i) | y(i); µ0, µ1, Σ) + m � i=1 log pY (y(i); ψ)(8) where ψ, µ0, and σ are parameters. Substituting Eq. (5)∼(7) into Eq. (8) gives 2 us a full expression expression of ℓ(ψ, µ0, µ1, Σ) ℓ(ψ, µ0, µ1, Σ) = m � i=1 log pX|Y (x(i) | y(i); µ0, µ1, Σ) + m � i=1 log pY (y(i); ψ) = � i:y(i)=0 log � 1 (2π)n/2|Σ|1/2 exp � −1 2(x − µ0)T Σ−1(x − µ0) �� + � i:y(i)=1
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    margin of x0 (with respect to the hyperplane ωT x + b = 0). Now, given a set of m training data {(x(i), y(i))}i=1,··· ,m, we first assume that they are linearly separable. Specifically, there exists a with y(i) = 1, while ωT x(i) + b ≤ 0 for ∀i with y(i) = −1. As shown in Fig. 1, for ∀i = 1, · · · , m, we can calculate its margin as γ(i) = y(i) �� ω ∥ω∥ �T x(i) + b ∥ω∥ � (5) With respect to the · · · , k Aw − b = 0 if it is strictly feasible, i.e., ∃ ω ∈ relintD : gi(ω) < 0, i = 1, · · · , m, Aw = b Detailed proof of the above theorem can be found in Prof. Boyd and Prof. Vandenberghe’s Convex
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
共 68 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitectures机器学习课程温州大学03深度PyTorch入门ReleaseNotesKeras基于PythonIntroduction深度学习TutorialLectureGaussianDiscriminantAnalysisNaiveBayesonSupportVectorMachine
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩