积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)机器学习(12)

语言

全部英语(7)中文(简体)(5)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.036 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    RandomFlip("horizontal"), layers.RandomRotation(0.1), ]) def augfn(image, label): image = tf.expand_dims(image, 0) # Introduce a batch dimension image = augs(image, training=True) # Apply augmentation conveys the information that the person is going to the market. A version of this example could be a native english speaker’s response, “I go market”, to an elementary level english speaker. Although the efficiencies. The key takeaway for the reader from this section is that augmentation techniques can help to expand the datasets to reduce or eliminate the need for expensive data collection in data scarce situations
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    or mail filter Personalized tutoring Discover new knowledge from large databases (data mining) Market basket analysis (e.g. diapers and beer) Medical information mining (e.g. migraines to calcium channel September 6, 2023 26 / 57 Supervised Regression Problems Predict tomorrow’s stock market price given current market conditions and other possible side information Predict the age of a viewer watching
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    Data Technologies Automation? Challenges – Scale of Financial Information Companies Market Types Speed To Market Problematic Files/Input Accuracy Modified from https://upload.wikimedia.org/wiki
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    Input 应用案例: Capital One “A highly scalable solution, it also offers potential to speed time to market for a new generation of voice and text interactions such as our recently launched Capital One skill
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 09. 维度变换

    Tensor维度变换 主讲人:龙良曲 Operation ▪ View/reshape ▪ Squeeze/unsqueeze ▪ Transpose/t/permute ▪ Expand/repeat 2 View reshape ▪ Lost dim information 3 Flexible but prone to corrupt 4 Squeeze v.s. unsqueeze 28 28 Neg. Idx -4 -3 -2 -1 7 For example 8 squeeze 9 Expand / repeat ▪ Expand: broadcasting ▪ Repeat: memory copied 10 Expand/expand_as 11 repeat Memory touched 12 .t 13 Transpose 14
    0 码力 | 16 页 | 1.66 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 10. Broadcasting

    主讲人:龙良曲 Broadcasting https://blog.openai.com/generative-models/ ▪ Expand ▪ without copying data Key idea ▪ Insert 1 dim ahead ▪ Expand dims with size 1 to same size ▪ Feature maps: [4, 32, 14, 14] it broadcasting-able? ▪ Match from Last dim! ▪ If current dim=1, expand to same ▪ If either has no dim, insert one dim and expand to same ▪ otherwise, NOT broadcasting-able Situation 1: ▪ [4, 32 14, 14] Situation 3 ▪ [4, 32, 14, 14] ▪ [2, 32, 14, 14] ▪ Dim 0 has dim, can NOT insert and expand to same ▪ Dim 0 has distinct dim, NOT size 1 ▪ NOT broadcasting-able How to understand this behavior
    0 码力 | 12 页 | 551.84 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    算法的每个模块对于数据张量的格式有不同的逻辑要求,当现有的数据格式不满足算 法要求时,需要通过维度变换将数据调整为正确的格式。这就是维度变换的功能。 基本的维度变换操作函数包含了改变视图 reshape 操作、插入新维度 expand_dims 操 作、删除维度 squeeze 操作、交换维度 transpose 操作、复制数据 tile 操作等,下面将一一 介绍。 4.7.1 改变视图 在介绍改变视图 reshape x@w+b # 不同 shape 的张量直接相加 y 上述加法并没有发生逻辑错误,那么它是怎么实现的呢?这是因为它自动调用函数 x.expand(new_shape),将两者 shape 扩张为相同的[2,3],即上式可以等效为: y = x@w + b.expand([2,3]) # 手动扩展,并相加 也就是说,操作符+在遇到 shape 不一致的 2 个张量时,会隐式考虑将 2 个张量自动扩展到 Broadcasting 示意图 通过 x.expand(new_shape)函数可以显式地在逻辑上扩展数据形状,将现有 shape 扩张 为 new_shape,扩充后张量继续完成后续数学运算,可能触发 Broadcasting 机制,相对于昂 贵的 repeat 操作来说,expand 操作几乎是零消耗的,甚至用户都不需要显式调用 expand 操 作。图 4.8 的代码实现如下: In
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    x.shape torch.Size([2, 3]) 1 2 3 2 3 (dim = 0) Tensors – Common Operations ● Unsqueeze: expand a new dimension >>> x = torch.zeros([2, 3]) >>> x.shape torch.Size([2, 3]) >>> x = x.unsqueeze(1) as well PyTorch NumPy x.reshape / x.view x.reshape x.squeeze() x.squeeze() x.unsqueeze(1) np.expand_dims(x, 1) ref: https://github.com/wkentaro/pytorch-for-numpy-users Tensors – Device ● Tensors
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) 预训练模型 APPLICATIONS 159 x = preprocess_input(x) preds = model.predict(x) # decode jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) features = model.predict(x) 13.2.3 从 VGG19 的任意中间层中抽取特征 jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) 预训练模型 APPLICATIONS 160 block4_pool_features = model.predict(x)
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    lambda x: (preprocessor(x['description']), tf.expand_dims(x['label'], axis=-1))) test_ds = batched_test.map( lambda x: (preprocessor(x['description']), tf.expand_dims(x['label'], axis=-1))) Now we will
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesLectureOverviewQCon北京2018键盘输入键盘输入神经网络神经网神经网络深度学习彭博应用李碧野亚马亚马逊AWSAIServicesPyTorch入门实战09维度变换10Broadcasting深度学习MachinePytorchTutorialKeras基于PythonAdvancedTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩