积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)机器学习(8)

语言

全部英语(4)中文(简体)(4)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.061 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    quantization? You can leverage the np.random.uniform() function (from the numpy package) to create dummy inputs (X), weights (W) and bias (b) tensors. Using these three tensors, compute the layer output
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    compared to quantization while achieving a similar reconstruction loss. Simulating clustering on a dummy dense fully-connected layer Now that we have looked at how to compress a given tensor, applied it
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    logits tensor. We can do this by implementing the Softmax function in NumPy. import numpy as np # A dummy logits tensor. logits_tensor = np.array([1.0, 2.0, 3.0]) # Compute e(logits) exp_tensor = np.exp(logits_tensor)
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    37 Qwen 1.13.1 使用示例 import json import os from qwen_agent.llm import get_chat_model # Example dummy function hard coded to return the same weather # In production, this could be your backend API or
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    “Alley_nan”的值设置为0。缺少巷子类型的行会 将“Alley_Pave”和“Alley_nan”分别设置为0和1。 inputs = pd.get_dummies(inputs, dummy_na=True) print(inputs) NumRooms Alley_Pave Alley_nan 0 3.0 1 0 1 2.0 0 1 2 4.0 0 1 3 3.0 0 1 ng_RL”为1,“MSZoning_RM”为0。pandas软件包会自动为 我们实现这一点。 # “Dummy_na=True”将“na”(缺失值)视为有效的特征值,并为其创建指示符特征 all_features = pd.get_dummies(all_features, dummy_na=True) all_features.shape (2919, 331) 可以看到此转换会将
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    by col1 • CrossCount[2] select count (1) group by col1,col2 特征组合 + 特征选择  特征选择 • Proxy task: GBDT特征选择 • Variational Dropout: 边训练边选择(NAS) 3.工程优化复 杂 4.数据获取困 难 挑战 深度模型是非线性的: • 参数很多
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    latencies on the target device to search for a Pareto-Optimal model. There were models which used proxy metrics such as FLOPS as an indicator of performance on target devices. But, for the same amount of
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    能指标,比如准确率???,但是把准确 率当作损失函数去优化时,会发现 ???? ?? 其实是不可导的,无法利用梯度下降算法优化网络 参数?。一般的做法是,设立一个平滑可导的代理目标函数(Proxy Objective),比如优化模 型的输出 与 One-hot 编码后的真实标签?之间的距离(Distance),通过优化代理目标函数得 到的模型,往往在其它指标上也能有良好的表现。因此,相对回归问题而言,分类问题的
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterCompressionTechniquesAdvancedAI模型千问qwen中文文档动手深度学习v2阿里云上建模实践程孟力AutomationPyTorch深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩