积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部中文(简体)(7)英语(6)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.062 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Chapter 2 - Compression Techniques “I have made this longer than usual because I have not had time to make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep deep learning efficiency. Now, we will elaborate on one of those ideas, the compression techniques. Compression techniques aim to reduce the model footprint (size, latency, memory etc.). We can reduce the chapter, we introduce Quantization, a model compression technique that addresses both these issues. We’ll start with a gentle introduction to the idea of compression. Details of quantization and its applications
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    Advanced Compression Techniques “The problem is that we attempt to solve the simplest questions cleverly, thereby rendering them unusually complex. One should seek the simple solution.” — Anton Pavlovich Pavlovich Chekhov In this chapter, we will discuss two advanced compression techniques. By ‘advanced’ we mean that these techniques are slightly more involved than quantization (as discussed in the second of our models. Did we get you excited yet? Let’s learn about these techniques together! Model Compression Using Sparsity Sparsity or Pruning refers to the technique of removing (pruning) weights during
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    an 80% accuracy with the same number of training steps and labels. Thus, delivering a 2x model compression. Again, this is a hypothetical scenario which illustrates how learning techniques are leveraged samples. Similar to mixup, the parameter is sampled from a probability distribution and is used as the ratio of the area of the cut-mixed section ( ) to the area of the sample image ( ). The positional offsets
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    训练模型 由于VGG‐11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络,足够用于训练Fashion‐MNIST数 据集。 ratio = 4 small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch] net = vgg(small_conv_arch) 除了使用略高的学习率外,模型训练过程与 通过均匀采样获得的连续值。 shape_aug = torchvision.transforms.RandomResizedCrop( (200, 200), scale=(0.1, 1), ratio=(0.5, 2)) apply(img, shape_aug) 13.1. 图像增广 551 改变颜色 另一种增广方法是改变颜色。我们可以改变图像颜色的四个方面:亮度、对比度、饱和度和色调。在下面的 整区域边界从而更准确地预测目标的真实边界框(ground‐truth bounding box)。不同的模型使用的区域采样 方法可能不同。这里我们介绍其中的一种方法:以每个像素为中心,生成多个缩放比和宽高比(aspect ratio) 不同的边界框。这些边界框被称为锚框(anchor box)我们将在 13.7节中设计一个基于锚框的目标检测模型。 首先,让我们修改输出精度,以获得更简洁的输出。 %matplotlib inline
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    right: RMSE (cm) of keyframes, the starting ratio (i.e. dividing the initialization frame index by the total frame number), and the tracking success ratio after initialization. Group A: simple translation
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    out的输出向量?,这个过程可以看成是特征降维的 过程,把原始的高维输入向量?变换到低维的变量?。特征降维(Dimensionality Reduction)在 机器学习中有广泛的应用,比如文件压缩(Compression)、数据预处理(Preprocessing)等。最 常见的降维算法有主成分分析法(Principal components analysis,简称 PCA),通过对协方差 矩阵进行特征分解而得到数据的主要成分,但是 重要性采样 ratio = (pi_a / tf.gather(old_action_log_prob, index, axis=0 )) surr1 = ratio * advantage surr2 = tf.clip_by_value(ratio, 1 - epsilon, 1 + epsilon)
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    = PCA(n_components=3) 训练模型 pca.fit(X) 投影后各个特征维度的方差比例(这里是三个主成分) print(pca.explained_variance_ratio_) 投影后的特征维度的方差 print(pca.explained_variance_) 20 2.Scikit-learn主要用法 无监督学习算法-聚类 DBSCAN 层次聚类
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    Moving on, we define a few configurations for the controller to decide the exploitation/exploration ratio, the hidden size of the recurrent cell, the number of training episodes for the controller and the
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient models & layers, infrastructure). Our hope leeway in model quality, we can trade off some of it for a smaller footprint by using lossy model compression techniques7. For example, when compressing a model naively we might reduce the model size, RAM core areas, with infrastructure and hardware forming the foundation (see Figure 1-7). 7 Lossy compression techniques allow you to compress data very well, but you lose some information too when you try
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    chapter 2. We could also incorporate compression techniques such as sparsity, k-means clustering, etc. which will be discussed in the later chapters. 2. Even after compression, the vocabulary itself is large: embedding model’s quality and footprint metrics as discussed. We can combine other ideas from compression techniques and learning techniques on top of efficient architectures. As an example, we can train embeddings based model using data augmentation to achieve higher performance and subsequently apply compression or distillation to further reduce its footprint. With this chapter, we hope to have set the stage
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterCompressionTechniquesAdvanced动手深度学习v2复杂环境视觉同时定位地图构建PyTorch深度学习机器课程温州大学ScikitlearnAutomationIntroductionArchitectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩