积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)机器学习(16)

语言

全部英语(12)中文(简体)(4)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    workflow of such a device. The model continuously classifies audio signals into one of the four classes, three of which are the keywords that the device will accept: hello, weather and time. The fourth of a dog (30%) and a hamster (70%). The label assigned to this image is a composite of the two classes in the same proportion. Thus, the model would be expected to predict a ‘dog’ with a probability of tensorflow.keras import layers, optimizers, metrics DROPOUT_RATE = 0.2 LEARNING_RATE = 0.0002 NUM_CLASSES = 102 def create_model(): # Initialize the core model core_args = dict(input_shape=(IMG_SIZE,
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    只需一行代码就能评估模型性能: loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128) 或者对新的数据生成预测: classes = model.predict(x_test, batch_size=128) 构建一个问答系统,一个图像分类模型,一个神经图灵机,或者其他的任何模型,就是这么 的快。深度学习背后的思想很 size=(1000, 1)) # 将标签转换为分类的 one-hot 编码 one_hot_labels = keras.utils.to_categorical(labels, num_classes=10) # 训练模型,以 32 个样本为一个 batch 进行迭代 model.fit(data, one_hot_labels, epochs=10, batch_size=32) 3 randint(10, size=(1000, 1)), num_classes=10) x_test = np.random.random((100, 20)) y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) model = Sequential() # Dense(64)
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    This is a binary classification problem in which our model classifies an input into one of the two classes: ‘Suitable’ and ‘Not Suitable’. Since in this scenario we have only a few examples it is easy to is possible to linearly separate3 the data points belonging to the two classes using a line. The line separating the two classes is called a decision boundary, and this is only one possible decision boundary decision boundary to separate the two classes of animals (suitable and not suitable for the petting zoo). In this case, we could manually separate the two classes (Suitable / Not Suitable), since there
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    our task. def get_bert_model( encoder_size, learning_rate=2e-5, keep_tfhub_weights=True, num_classes=4): """Create a BERT classifier.""" with tpu_strategy.scope(): # Prepare the inputs. bert_inputs output = tf.keras.layers.Dense(50, activation='relu')(output) output = tf.keras.layers.Dense(num_classes, activation=None)(output) output = tf.keras.layers.Activation('softmax')(output) bert_classifier over-confidently. Consider the case where we have a model and solving a multi-class classification problem with classes. The ground-truth labels will either be the index of the correct class for that given example, or
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 keras tutorial

    add(Dropout(0.2)) model.add(Dense(512, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(num_classes, activation='softmax')) Where, Keras 19  Line 1 imports Sequential model chapter. Keras 20 As we learned earlier, Keras modules contains pre-defined classes, functions and variables which are useful for deep learning algorithm. Let us learn the modules (include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) Here,  include_top refers the fully-connected layer at the top of the network.  weights
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    creating a random classification dataset with 20 samples, each one assigned to one of the five target classes. import random import tensorflow as tf import numpy as np from tensorflow.keras import layers, losses chosen values for the learning_rate and dropout_rate. DROPOUT_RATE = 0.2 LEARNING_RATE = 0.0002 NUM_CLASSES = 102 def build_hp_model(hp): if hp: learning_rate = hp.Float( "learning_rate", min_value=1e-4 resnet.preprocess_input(x)), core, layers.Flatten(), layers.Dropout(dropout_rate), layers.Dense(NUM_CLASSES, activation='softmax') ]) adam = optimizers.Adam(learning_rate=learning_rate) model.compile(
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    2016)中的ResNet‐18。因为输入的图像很小,所以稍微修改了一下。与 7.6节的区别在于,我们在开始时 使用了更小的卷积核、步长和填充,而且删除了最大汇聚层。 #@save def resnet18(num_classes, in_channels=1): """稍加修改的ResNet-18模型""" def resnet_block(in_channels, out_channels, num_residuals AdaptiveAvgPool2d((1,1))) net.add_module("fc", nn.Sequential(nn.Flatten(), nn.Linear(512, num_classes))) return net 12.6.2 网络初始化 我们将在训练回路中初始化网络。请参见 4.8节复习初始化方法。 net = resnet18(10) # 获取GPU列表 devices """使用非极大值抑制来预测边界框""" device, batch_size = cls_probs.device, cls_probs.shape[0] anchors = anchors.squeeze(0) num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2] out = [] for i in range(batch_size): (continues
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    .. What’s the underlying decision rule in logistic regression? At the decision boundary, both classes are equiprobable; thus, we have Pr(Y = 1 | X = x; θ) = Pr(Y = 0 | X = x; θ) ⇒ 1 1 + exp(−θTx) multinomial) classification is the problem of classifying instances into one of the more than two classes The existing multiclass classification techniques can be categorized into Transformation to binary
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    aspect. It has more than 1 million labeled images, where each image belongs to 1 out of 1000 possible classes. This helped with creating a testbed for researchers to experiment with. Along with techniques like a ‘0’ to the incorrect class, the soft labels consist of probabilities for each of the possible classes according to the teacher model. Figure 1-10: Distillation of a smaller student model from a larger
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    follows right after. The final layer is a dense (fully-connected) layer of size 10 because we have 10 classes to identify. Note that the first dimension is None, since it refers to the batch dimension which SparseCategoricalCrossEntropy loss function as it is best suited to classify multi-class (In this case, classes are 0, 1, 2 and so on until 9) inputs. We use the sparse variant of the categorical cross entropy
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesKeras基于Python深度学习ArchitecturesAdvancedTechnicalReviewkerastutorialAutomation动手v2LectureLogisticRegressionIntroductionCompression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩