积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)机器学习(20)

语言

全部英语(13)中文(简体)(7)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.035 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    search can be extended beyond training parameters to structural parameters that can manipulate the structure of a network. The number of dense units, number of convolution channels or the size of convolution the output of the previous layers. However, HPO techniques are insufficient to model this ordered structure because they do not model the concept of order well. Another limitation of HPO is the search for the value for is chosen to be 5. Figure 7-8 (right) shows a predicted block. Figure 7-8: The structure of a block used to compose normal and reduction cells. The image on the left shows the timesteps
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 keras tutorial

    libraries but difficult to understand for creating neural networks. Keras is based on minimal structure that provides a clean and easy way to create deep learning models based on TensorFlow or Theano It supports the following features:  Consistent, simple and extensible API.  Minimal structure - easy to achieve the result without any frills.  It supports multiple platforms and backends chapter. Introduction A Keras layer requires shape of the input (input_shape) to understand the structure of the input data, initializer to set the weight for each input and finally activators to transform
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    matrix multiplication anyway. Structured sparsity as the name suggests, incorporates some sort of structure into the process of pruning. One way to do this is through pruning blocks of weights together (block org/abs/1911.09723v1 3 https://github.com/google/XNNPACK Project: Lightweight model for pet filters application Recall that our regular CNN model in the pet filters project consisted of thirteen convolution with the trained weights. In essence, the structural aspect of pruning helps the network achieve a structure which could be trained to achieve a better performance than the trained dense network even without
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    you to play with. We have already downloaded the dataset in the dbpedia_csv directory, and the structure is as follows. dbpedia_csv/ dbpedia_csv/train.csv dbpedia_csv/readme.txt dbpedia_csv/test.csv dbpedia_csv/classes edge devices. Let’s say you want to design a mobile application to highlight pets in a picture. A DSC model is a perfect choice for such an application because it has a smaller footprint than a regular convolution segmentation mask over an object in the input sample. This model will be used within a mobile application. Mobile devices are resource constrained. Let’s see if we can reduce the model footprint without
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    relationships between inputs. In such pretext tasks, typically, the model pretends that a part/structure of the input is missing and it learns to predict the missing bit. It is similar to solving an almost downstream application (which is very reasonable), we only need to achieve that saving across 100 applications before it becomes profitable to pre-train BERT-Base rather than train each application from scratch
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    many layers as Torch. • It includes lot of loss functions. • It allows building networks whose structure is dependent on computation itself. • NLP: account for variable length sentences. Instead of padding the sentence’s length. PyTorch • Fundamental Concepts of PyTorch • Tensors • Autograd • Modular structure • Models / Layers • Datasets • Dataloader • Visualization Tools like • TensorboardX (monitor training)
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    loss Efficient Network Structure U-Net or encoder-decoder network [Su et al, 2017] Remaining Challenges 82 Input Output conv skip connection Efficient Network Structure Multi-scale or cascaded refinement
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    challenging because the human handwriting varies from person-to-person. However, there is some basic structure in handwritten digits that a neural network should be able to learn. MNIST (Modified NIST) handwritten far, we have created a model which has stacked layers. We have also defined the input and output structure of the model. Now, let’s get it ready for training. The get_compiled_model() function creates our
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    aspects of the data Examples: Discovering clusters Discovering latent factor Discovering graph structure Matrix completion Feng Li (SDU) Overview September 6, 2023 28 / 57 Unsupervised Learning: Discovering
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomationkerastutorialAdvancedCompressionTechniquesArchitecturesTechnicalReviewPyTorchTutorial深度学习图像视频处理技术沈小勇LectureOverviewReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩