积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部英语(9)中文(简体)(2)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    context (neighboring words), and the label (masked word to be predicted). The word tokens are vectorized by replacing the actual words by their indices in our vocabulary. If a word doesn’t exist in the overfitting. We can now vectorize the train and test datasets. x_train_vectorized = vectorization_layer(x_train) x_test_vectorized = vectorization_layer(x_test) Step 3: Initialization of the Embedding model! bow_model_w2v_history = bow_model_w2v.fit( x_train_vectorized, y_train, batch_size=64, epochs=10, validation_data=(x_test_vectorized, y_test)) Epoch 1/10 313/313 [==============================]
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    solution. It supports vector operations which operate on a vector (or a batch) of x variables (vectorized execution) instead of one variable at a time. Although it is possible to work without it, you would deep learning applications which frequently operate on batches of data. Using vectorized operations also speeds up the execution (and this book is about efficiency, after all!). We highly recommend learning
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    following vectorized form, J(θ) = 1 2m (Xθ − ⃗y)T (Xθ − ⃗y) where ⃗y = � ���� y(1) y(2) ... y(m) � ���� , X = � ���� −(x(1))T − −(x(2))T − ... −(x(m))T − � ���� The vectorized version is
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    � hθ(x(i)) � 1 − hθ(x(i)) � x(i) � x(i)�T � (8) Note that the formulas presented above are the vectorized versions. Specifically, this means that x(i) ∈ Rn+1, x(i) � x(i)�T ∈ R(n+1)×(n+1), while hθ(x(i))
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 Machine Learning

    activation • σ′(z[L] j ) measures how fast the activation function σ is changing at zL j • A vectorized form δ[L] = ▽aL ⊙ σ′(z[L]) 13 / 19 Fundamental Equations • An equation for the error δl in terms
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    convolution, an intermittent silent failure might happen due to dependency on the order of the stream execution. In some cases this might be manifested as NaNs in the output and we recommend to disable cuDNN convolution, an intermittent silent failure might happen due to dependency on the order of the stream execution. In some cases this might be manifested as NaNs in the output and we recommend to disable cuDNN updates ‣ Initial support for channel-last layout for convolutions ‣ Support for loop unrolling and vectorized loads and stores in TensorIterator ‣ Support for input activations with more than 231 values
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想

    keras:分布式和高性能的 Keras • 构建和训练模型的高层次 API • API 完全兼容原生 Keras • 支持保存和加载 TensorFlow SavedModel • 支持 Eager Execution • 支持分布式训练 tf.data:功能强大的数据管理模块 支持多种数据处理 图像解码 Shuffle py_function 重采样 支持多种数据格式 图像文件 文本文件 CSV
    0 码力 | 40 页 | 9.01 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    (continued) • Which one do you think is better? PyTorch! • Easy Interface − easy to use API. The code execution in this framework is quite easy. Also need a fewer lines to code in comparison. • It is easy to
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    [split/type conversion] Sequence Feature [side info] Op Fusion [hash + embedding] Overlap Execution [FG OP化] Item Feature增量更新 3.工程优化复 杂 4.数据获取困 难 挑战 深度模型是非线性的: • 参数很多 • 参数敏感 • 不同场景的数据上差异大
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    results. The trials are independent of each other which makes them a good candidate for parallel execution. For example, the trial set for two hyperparameters and where and is Figure 7-2 (a) shows results
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesCompressionTechniquesExperimentLinearRegressionLogisticandNewtonMethodMachinePyTorchReleaseNotesTensorFlow快速入门实战基础理论基础理论设计思想Tutorial阿里云上深度学习建模实践程孟力Automation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩