积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(26)机器学习(26)

语言

全部英语(19)中文(简体)(7)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.083 秒,为您找到相关结果约 26 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    let's assume that we have such a general model that works for natural language inputs. Then by definition the model should be able to encode the given text in a sequence of embeddings such that there is 6-12 shows multiple examples of pacing functions. The x-axis is the training iteration i.e. the variable described above, and the y-axis is the fraction of data that is enabled from the sorted training recap, refer to the two plots in figure 6-13. Both are plots of functions in a single variable, with the variable on the x-axis and being the y-axis, and we are trying to find the minima for both. On
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    September 13, 2023 3 / 31 Supervised Learning (Contd.) Features: input variables, x; Target: output variable, y; Training example: (x(i), y(i)), i = 1, 2, 3, ..., m Hypothesis: h : X → Y. Training � i=1 (hθ(x(i)) − y(i))2 Feng Li (SDU) Linear Regression September 13, 2023 9 / 31 Gradient Definition Directional Derivative: The directional derivative of function f : Rn → R in the direction u ∈ complete the proof. Feng Li (SDU) Linear Regression September 13, 2023 12 / 31 Gradient (Contd.) Definition Gradient: The gradient of f is a vector function ∇f : Rn → Rn defined by ∇f (x) = n � i=1 ∂f
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    P(A¬) = 1 − P(A) Feng Li (SDU) GDA, NB and EM September 27, 2023 5 / 122 Conditional Probability Definition of conditional probability: Fraction of worlds in which event A is true given event B is true GDA, NB and EM September 27, 2023 6 / 122 Conditional Probability (Contd.) Real valued random variable is a function of the outcome of a ran- domized experiment X : S → R Examples: Discrete random variables valued random variable is a function of the outcome of a ran- domized experiment X : S → R For continuous random variable X P(a < X < b) = P({s ∈ S : a < X(s) < b}) For discrete random variable X P(X =
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    optimization problem min ω f (ω) s.t. gi(ω) ≤ 0, i = 1, · · · , k hj(ω) = 0, j = 1, · · · , l with variable ω ∈ Rn, domain D = �k i=1 domgi ∩�l j=1 domhj, optimal value p∗ Objective function f (ω) k inequality mapped features remain efficient Feng Li (SDU) SVM December 28, 2021 47 / 82 Kernels: Formal Definition Each kernel K has an associated feature mapping φ φ takes input x ∈ X (input space) and maps non-separable case, we relax the above constraints as: y(i)(ωTx(i) + b) ≥ 1 − ξi for ∀i ξi is called slack variable Non-separable case We will allow misclassified training samples, but we want the number of such
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    (9) s.t. gi(ω) ≤ 0, i = 1, · · · , k (10) hj(ω) = 0, j = 1, · · · , l (11) where ω ∈ D is the variable with D = �k i=1 domgi ∩ �l j=1 domhj representing the feasible domain defined by the constraints f(ω∗) The first equality is due to the strong duality, and we have the second one according to the definition of the dual function. The third inequality follows because the infimum of the Lagrangian over ω above constraints as: y(i)(ωT x(i) + b) ≥ 1 − ξi for ∀i = 1, · · · , m, where ξi is called slack variable. In the non-separable case, we allow misclassified training examples, but we would like the number
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    container (defaults to all GPUs, but can be specified by using the NVIDIA_VISIBLE_DEVICES environment variable). For more information, refer to the nvidia-docker documentation. Note: Starting in Docker 19 hang or as an "illegal instruction" exception. A workaround for this case is to set the environment variable NCCL_PROTO=^LL128. This issue will be addressed in an upcoming release. PyTorch RN-08516-001_v23 CUDA_MODULE_LOADING`. Refer to the CUDA C++ Programming Guide for more information about this environment variable. Announcements ‣ NVIDIA Deep Learning Profiler (DLProf) v1.8, which was included in the 21.12
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    super(MyLayer, self).__init__(**kwargs) def build(self, input_shape): # Create a trainable weight variable for this layer. self.kernel = self.add_weight(name='kernel', shape=(input_shape[1], self.output_dim) inputs = K.placeholder(ndim=3) 下面的代码实例化一个变量。它等价于 tf.Variable() 或 th.shared()。 import numpy as np val = np.random.random((3, 4, 5)) var = K.variable(value=val) # 全 0 变量: var = K.zeros(shape=(3, 4, 5)) 使用随机数初始化张量 b = K.random_uniform_variable(shape=(3, 4), low=0, high=1) # 均匀分布 c = K.random_normal_variable(shape=(3, 4), mean=0, scale=1) # 高斯分布 d = K.random_normal_variable(shape=(3, 4), mean=0, scale=1)
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    a sample 2D weight matrix with randomly initialized float values. We also define a sparsity_rate variable initialized with the value 0.4 to sparsify 40% of the total number of weights. Finally, we compute that you are convinced that sparsity helps with improving compression. Increasing the sparsity_rate variable’s value will further reduce the size of the sparsified and compressed size. To take a step back 5-2 uses a fixed pruning rate $$p$$. However, we could use variable pruning rates across the pruning rounds. The motivation behind using variable sparsity is that a pre-trained model’s weights will get disrupted
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 自定义 Variable 数据与网络训练 19 4.2 准确率的可视化 22 4.3 分类结果的可视化 23 4.4 自定义 Dataset 数据集 25 3 4.5 总结 27 Literature . chapter3-3.py。 4. 构建自己的数据集 4.1 自定义 Variable 数据与网络训练 19 4.2 准确率的可视化 22 4.3 分类结果的可视化 23 4.4 自定义 Dataset 数据集 25 4.5 总结 27 本章我们的目标是把构建自己的数据集,并来测试和可视化。 4.1 自定义 Variable 数据与网络训练 假如我们并没有图像数据,我们自己创造一些数据,并用它们来分类。 import torch import numpy as np # 生 成 数 据 def dataGenerate ( data , l a b e l ) : 19 20 4.1. 自定义 Variable 数据与网络训练 f o r idata in data : i f idata [ 0 ] < 0 . 5 : # 把 小 于0 .5 的 值 压 缩 到 [ 0 , 1 ] 之 间
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    image. We assume X = [X1, X2, · · · , Xn]T is a random variable representing the feature vector of the given image, and Y ∈ {0, 1} is a random variable representing if there is a cat in the given image. Now = ψy(1 − ψ)1−y (5) • A2: X | Y = 0 ∼ N(µ0, Σ): The conditional probability of continuous random variable X given Y = 0 is a Gaussian distribution parameterized by µ0 and Σ, such that the corresponding Σ−1(x − µ0) � (6) • A3: X | Y = 1 ∼ N(µ1, Σ): The conditional probability of continuous random variable X given Y = 1 is a Gaussian distribution parameterized by µ1 and Σ, such that the corresponding
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewLectureLinearRegressionGaussianDiscriminantAnalysisNaiveBayesSupportVectorMachineNotesonPyTorchReleaseKeras基于Python深度学习Compression连接神经网络神经网神经网络实战pytorch
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩