阿里云上深度学习建模实践-程孟力人脸分类模型: 超大softmax 3D卷积模型 M6模型 RapidFormer性能 工程优化: 模型并行(Whale) FP16 / Int8 模型剪枝 Op融合(Fusion Stitch) MILR: Blade Disc 工程优化: Blade模型推理 Dynamic Shape Compiler for Machine Learning Workloads Graph去重] 内存Allocate优化 ParallelStringOp [split/type conversion] Sequence Feature [side info] Op Fusion [hash + embedding] Overlap Execution [FG OP化] Item Feature增量更新 3.工程优化复 杂 4.数据获取困 难 挑战 深度模型是非线性的: Video Fram es Bert Title OCR Cls Tok en Title feature OCR feature Im age feature M HSA Fusion M VM VTM M TM Tran sform er decoder Tran sform er decoder Tran sform er decoder Tran0 码力 | 40 页 | 8.51 MB | 1 年前3
QCon2018北京-基于深度学习的视频结构化实践-姚唐仁������ ���� ���� 主题分类-特征提取 DPN SENet ResNeXt NASNet 主题分类-模型训练 模型融合 a) Early fusion b) Late fusion 三段式方式 Loss Func� Loss ����� �� ü ���� ü ����� ü ���� ü ���� � ü ��� ü ���� 人物信息结构化0 码力 | 39 页 | 38.01 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波算法模型层 4 深度学习-分布式模型推理 • 推理性能优化 • 减少计算量: operator fusion/XLA/TVM/prune/float16/quantization • 加快计算速度: batching/TensorRT/MPS/SSE/AVX/Neon • operator fusion • 针对特定场景重写耗时算子 • 重构tensorflow计算引擎 • batching0 码力 | 36 页 | 16.69 MB | 1 年前3
构建基于富媒体大数据的弹性深度学习计算平台training Semi-supervised Labeling Incremental training Data Augment Model comparison Model Fusion Gray Update Auto Evaluation Log Server Graph Abstraction Data Flow API Manager Pipeline0 码力 | 21 页 | 1.71 MB | 1 年前3
深度学习下的图像视频处理技术-沈小勇????????? ???????????? ????????????0 ???????????? ME ????????????????????????→0 SPMC Detail Fusion Net Our Method 48 ???????????????????????? ???????????? ????????????0 ???????????? ME ????0 码力 | 121 页 | 37.75 MB | 1 年前3
PyTorch Release Notesjit.script and torch.jit.tracepreview features including better support for pointwise operations in fusion. ‣ Added support for a C++ only API (new PyTorch 1.0 preview feature). ‣ Dataloader may still throw Reliability: Some cases where a dataloader could hang if shutdown during its iteration has been fixed. ‣ Fusion: Tensor and constant scalar operations, like add(t, 1), and chunk operations are now fusable. ‣0 码力 | 365 页 | 2.94 MB | 1 年前3
共 6 条
- 1













