《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient ArchitecturesThe animals on the bottom-right are cute and safe to play with. The dangerous animals occupy the top-left area of the plot. Note how we have compressed the high-dimensional information about animals discuss each step in detail. Step 1: Vocabulary Creation In this step, we create a vocabulary of the top words10 (ordered by frequency) from the given training corpus. We would learn embeddings of dimensions for every possible token, so we limit our vocabulary to a smaller subset using heuristics like the top N most-frequent words in the corpus. It is often straightforward to scale up or down the model quality0 码力 | 53 页 | 3.92 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesoften helps to make resource efficient models feasible. By feasible, we mean that the model meets the bar for quality metrics such as precision, recall, accuracy or others’. Let’s understand it with an example vertically shifted by 50px as shown in the top middle image in figure 3-6. Such a shift has two side-effects. First, a part of the image “falls off” the top edge. That information will be lost. And the respective axis. A shift parameter, s, controls the slide amount in pixels. The middle image in the top row in figure 3-6 is a 50px upshifted image generated by below code. # Horizontal Shift transfor0 码力 | 56 页 | 18.93 MB | 1 年前3
Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . . . . . . . 137 8.2.4 top_k_categorical_accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.2.5 sparse_top_k_categorical_accuracy . . . . . . . . . . . . . InceptionResNetV2 from keras.applications.mobilenet import MobileNet model = VGG16(weights='imagenet', include_top=True) 有关一些简单的用法示例,请参阅 应用模块的文档。 有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。 VGG16 模型也是以下几个 Keras 示例脚本的基础: 度 的 两 个 不 同 的 对 称 裁 剪 值: (symmetric_height_crop, symmetric_width_crop)。 • 如果为 2 个整数的 2 个元组:解释为 ((top_crop, bottom_crop), (left_crop, right_crop))。 • data_format: 字符串,channels_last (默认) 或 channels_first0 码力 | 257 页 | 1.19 MB | 1 年前3
AI大模型千问 qwen 中文文档more creative, lower is more coherent] PARAMETER temperature 0.7 PARAMETER top_p 0.8 PARAMETER repeat_penalty 1.05 PARAMETER top_k 20 TEMPLATE """{{ if and .First .System }}<|im_start|>system {{ .System max_tokens is for the maximum length for generation. sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05,␣ �→max_tokens=512) # Input the model name or path. Can be GPTQ or : | INFO | stdout | Running on public URL: https://6141e84201ce0bb4ed.gradio.live 你可以通过使用不同的温度和 top_p 值来尝试取得更好的结果。 1.11.6 总结 通过 SkyPilot,你可以轻松地在任何云上部署 Qwen1.5。我们建议您阅读 官方文档 了解更多用法和最新进展。 1.12 有监督微调0 码力 | 56 页 | 835.78 KB | 1 年前3
keras tutoriallibrary, which is built on top of popular deep learning libraries like TensorFlow, Theano, etc., for creating deep learning models. Overview of Keras Keras runs on top of open source machine libraries library used for numerical computational tasks developed by Google. Keras is a high level API built on top of TensorFlow or Theano. We know already how to install TensorFlow using pip. If it is not installed backend module backend module is used for keras backend operations. By default, keras runs on top of TensorFlow backend. If you want, you can switch to other backends like Theano or CNTK. Defualt0 码力 | 98 页 | 1.57 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 7 - AutomationDROPOUT_RATE. The learning rate was set to 0.0002 and the dropout rate was 0.2. The model reached the top accuracy of 70% after training for 100 epochs. In this project, we will let the HyperBand choose the core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Setup the top model = tf.keras.Sequential([ layers.Input([IMG_SIZE whether adding a dropout layer is a good idea. Neural Architectures are composed of layers stacked on top of each other with a given layer processing the output of the previous layers. However, HPO techniques0 码力 | 33 页 | 2.48 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewpre-trained model can then be used for classification or seq2seq tasks by adding additional layers on top of the last hidden layer as demonstrated by Howard et al.. As we mentioned in the previous section demonstrate better generalization and a more label efficient method. Towards that end, the authors report a top-1 accuracy of on ImageNet when fine-tuning with only 1% labels (13 labels per class). The SimCLR fine-tuned details about when label smoothing helps. The original Inception paper reported a 0.2% increase in top-1 and top-5 accuracies on ImageNet, with . Given that ImageNet is a 1000-way classification problem, a0 码力 | 31 页 | 4.03 MB | 1 年前3
PyTorch Release NotesTransformer model is based on the optimized implementation in Facebook's Fairseq NLP Toolkit and is built on top of PyTorch. The original version in the Fairseq project was developed using Tensor Cores, which provides Transformer model is based on the optimized implementation in Facebook's Fairseq NLP Toolkit and is built on top of PyTorch. The original version PyTorch Release 19.12 PyTorch RN-08516-001_v23.07 | 282 in Transformer model is based on the optimized implementation in Facebook's Fairseq NLP Toolkit and is built on top of PyTorch. The original version in the Fairseq project was developed using Tensor Cores, which provides0 码力 | 365 页 | 2.94 MB | 1 年前3
房源质量打分中深度学习应用及算法优化-周玉驰2019 KE.COM ALL COPYRIGHTS RESERVED 25 模型指标对比 v1.0 v2.0 AUC 0.814 0.831 Top1000去化率 30.72% +0.83% Top2000去化率 25.28% +1.2% Top3000去化率 22.13% +1.24% 2019 KE.COM ALL COPYRIGHTS RESERVED 26 模型演变历程 v10 码力 | 48 页 | 3.75 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112技术来防止过拟合,同时抛弃了逐层预训练的方式,直接在两块 NVIDIA GTX580 GPU 上训练网络。AlexNet 在 ILSVRC-2012 图片识别比赛中获得了第一名的成绩,比第二 名在 Top-5 错误率上降低了惊人的 10.9%。 自 AlexNet 模型提出后,各种各样的算法模型相继被发表,其中有 VGG 系列、 GoogLeNet 系列、ResNet 系列、DenseNet 系列等。ResNet ILSVRC10 ILSVRC11 ILSVRC12 ILSVRC13 ILSVRC14 ILSVRC14 ILSVRC15 ILSVRC挑战赛ImageNet数据集分类任务 网络模型层数 Top-5错误率 图 1.13 网络层数变化趋势 1.3.4 通用智能 过去,为了提升某项任务上的算法性能,往往需要利用先验知识手动设计相应的特 预览版202112 第 1 章 人工智能绪论 ,include_top=False) resnet.summary() # 测试网络的输出 x = tf.random.normal([4,224,224,3]) out = resnet(x) # 获得子网络的输出 out.shape 上述代码自动从服务器下载模型结构和在 ImageNet 数据集上预训练好的网络参数。通过设 置 include_top 参数为 False,可以选择去掉0 码力 | 439 页 | 29.91 MB | 1 年前3
共 20 条
- 1
- 2













