积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)机器学习(7)

语言

全部中文(简体)(5)英语(2)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.058 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    Remaining Challenges 39 Data from Vid4 [Ce Liu et al.] Bicubic x4 Misalignment Occlusion Large motion Effectiveness How to make good use of multiple frames? Are the generated details real? Remaining setting Intensive parameter tuning Slow Remaining Challenges 43 Advantages Better use of sub-pixel motion Promising results both visually and quantitatively Fully Scalable Arbitrary input size Arbitrary from Vid4 [Ce Liu et al.] Motion Estimation Our Method 46 ???????????????????????? ???????????? ????????????0 ???????????? ME ????????????????????????→0 Sub-pixel Motion Compensation (SPMC) Layer
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    simple translation Group B: there are loops Group C: slow and nearly pure rotation Group D: fast motion with strong rotation 时间统计 • 台式机上的计算时间 • 移动终端上 • 20~50 fps on an iPhone 6. 时空一致性深度恢复 • Guofeng
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    w = w.copy() w_1d = np.reshape(w, (-1)) # Create a list of indices sorted by the absolute magnitude of the weights. w_1d_sorted_indices = np.argsort(np.abs(w_1d)) # Compute the number of elements to num_elements_to_zero = int(w_1d.shape[0] * sparsity_rate) # Set the respective indices to zero. w_1d[w_1d_sorted_indices[:num_elements_to_zero]] = 0.0 w = np.reshape(w_1d, w.shape) return w def compress(w): x.""" # Pick initial centroids that are evenly spaced. x_sorted = np.sort(x.flatten()) centroids_init = np.linspace(x_sorted[0], x_sorted[-1], num_clusters) # Construct the variables in this optimization
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    where is the scoring function. Until the t-th epoch, we use the first fraction of examples from the sorted training set. If we train for a total of epochs, then should be 1.0 to ensure that the entire dataset fraction of data that is enabled from the sorted training set . The dotted pacing line shows a pacing function that starts with a fixed fraction of the data sorted by the scores, and at some iteration starts curriculum learning. Each pacing function describes the schedule of enabling the training dataset sorted by increasing hardness. Label smoothing and curriculum learning both help with better generalization
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    reserved_tokens is None: reserved_tokens = [] # 按出现频率排序 counter = count_corpus(tokens) self._token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True) # 未知词元的索引为0 self.idx_to_token = [''] + 权重就越高。 d2l.show_heatmaps(attention_weights.unsqueeze(0).unsqueeze(0), xlabel='Sorted training inputs', ylabel='Sorted testing inputs') 10.2.4 带参数注意力汇聚 非参数的Nadaraya‐Watson核回归具有一致性(consistency)的优点:如果有足够的数据,此模型会收敛到 滑。 d2l.show_heatmaps(net.attention_weights.unsqueeze(0).unsqueeze(0), xlabel='Sorted training inputs', ylabel='Sorted testing inputs') 392 10. 注意力机制 小结 • Nadaraya‐Watson核回归是具有注意力机制的机器学习范例。 • Na
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    chunk_conent: return docs if len(id_set) == 0 and self.score_threshold > 0: return [] id_list = sorted(list(id_set)) id_lists = separate_list(id_list) for id_seq in id_lists: (续下页) 1.16. Langchain 47
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    创建数字编码表 name2label = {} # 编码表字典,"sq...":0 # 遍历根目录下的子文件夹,并排序,保证映射关系固定 for name in sorted(os.listdir(os.path.join(root))): # 跳过非文件夹对象 if not os.path.isdir(os.path.join(root
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
深度学习图像视频处理技术沈小勇复杂环境视觉同时定位地图构建EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesTechnicalReview动手v2AI模型千问qwen中文文档PyTorch深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩