积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)机器学习(16)

语言

全部英语(11)中文(简体)(5)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.039 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    org/abs/1911.09723v1 3 https://github.com/google/XNNPACK Project: Lightweight model for pet filters application Recall that our regular CNN model in the pet filters project consisted of thirteen convolution important parameters: (1) the number of clusters, and (2) how to get the initial centroids. In this setup we use 16 centroids that are initially linearly spaced, similar to what we did in our previous examples practitioners will have to empirically verify what works best for their specific model training setup. Sparsity by itself helps with compressing the model size (footprint metric) since many connections
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because it wouldn’t serve its purpose of helping them communicate effectively with others who speak different languages. An application that employs a high quality model with a reasonable translation accuracy would garner better consumer terms of accuracy, precision, recall or other performance metrics). We designate a new model training setup to be more sample efficient, if it achieves similar or better performance with fewer data samples
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Setup the top model = tf.keras.Sequential([ layers.Input([IMG_SIZE, IMG_SIZE, 3], dtype = tf.uint8), layers experts. Imagine that we are developing an application to identify a flower from its picture. We have access to a flowers dataset (oxford_flowers102). As an application developer, with no experience with ML ML, we would like a model trained on the flowers dataset to integrate into our application. The goal of AutoML is to produce such a model.
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    the humble Bag-of-Words (BOW) model which we saw when discussing the Word2Vec training. In this setup, the model takes a sequence of word token ids generated by the vectorization layer as input and transforms edge devices. Let’s say you want to design a mobile application to highlight pets in a picture. A DSC model is a perfect choice for such an application because it has a smaller footprint than a regular convolution segmentation mask over an object in the input sample. This model will be used within a mobile application. Mobile devices are resource constrained. Let’s see if we can reduce the model footprint without
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    downstream application (which is very reasonable), we only need to achieve that saving across 100 applications before it becomes profitable to pre-train BERT-Base rather than train each application from scratch figure out the learning techniques and their right combinations that work well for your model training setup. With that being said, let’s jump to how label smoothing can help us avoid overfitting. Label Smoothing
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    examples, since the network had a large number of parameters. Thus to extract the most out of the setup, the model needed a large number of labeled examples. Collecting labeled data is expensive, since would also support new offline applications of these models. As an example, the Google Translate application supports offline mode which improves the user experience in low or no-connectivity areas. This
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    git clone https://github.com/keras-team/keras.git 然后,cd 到 Keras 目录并且运行安装命令: cd keras sudo python setup.py install 1.5 使用 TensorFlow 以外的后端 默认情况下,Keras 将使用 TensorFlow 作为其张量操作库。请跟随这些指引来配置其他 Keras 后端。 Evaluation of Gated Recurrent Neural Networks on Sequence Modeling • A Theoretically Grounded Application of Dropout in Recurrent Neural Networks 5.6.4 LSTM [source] keras.layers.LSTM(units, activation='tanh' LSTM • Supervised sequence labeling with recurrent neural networks • A Theoretically Grounded Application of Dropout in Recurrent Neural Networks 5.6.5 ConvLSTM2D [source] keras.layers.ConvLSTM2D(filters
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Algorithm Training Validation Testing Step 5. Entire Procedure Load Data Neural Network Training Setup dataset = MyDataset(file) tr_set = DataLoader(dataset, 16, shuffle=True) model = MyModel().to(device)
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    operations in input layer. It is used to convert positive into dense vectors of fixed size. Its main application is in text analysis. The signature of the Embedding layer function and its arguments with default Our MyCustomLayer is added to the model using 32 units and (16,) as input shape Running the application will print the model summary as below: Model: "sequential_1" ______________________________ verbose=1, validation_data=(x_test, y_test)) Executing the application will give the below content as output: Train on 60000 samples, validate on 10000 samples Epoch
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesAutomationArchitecturesTechnicalReviewIntroductionKeras基于Python深度学习MachinePytorchTutorialPyTorchReleaseNoteskerastutorial
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩