积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(42)机器学习(42)

语言

全部英语(26)中文(简体)(16)

格式

全部PDF文档 PDF(42)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 42 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    A Search Space for n parameters is a n-dimensional region such that a point in such a region is a set of well-defined values for each of those parameters. The parameters can take discrete or continuous hyperparameters to differentiate them from model parameters. The performance of deep learning relies on a set of good hyperparameters. Some of the commonly tuned hyperparameters are the learning rate and the momentum model. HPO performs trials with different sets of hyperparameters using the model as a blackbox. The set which performs the best is chosen for full training. In the next section, we'll discuss various approaches
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 keras tutorial

    floatx represent the default data type float32. You can also change it to float16 or float64 using set_floatx() method.  backend denotes the current backend. Suppose, if the file is not created then required information from the data.  Split data: Split the data into training and test data set. Test data will be used to evaluate the prediction of the algorithm / Model (once the machine learn)  Fit the model: The actual learning process will be done in this phase using the training data set.  Predict result for unknown value: Predict the output for the unknown input data (other than
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    component x(i) j ∈ {0, 1} (j = 1, · · · , n), and y(i) ∈ {1, · · · , k}. For brevity, we use [k] to denote set {1, 2, · · · k}. Therefore, we have i ∈ [m], j ∈ [n] and y ∈ [k]. In Naive Bayes (NB) model, the feature · · · , Xn = xn | Y = y)P(Y = y) = P(Y = y) n � j=1 P(Xj = xj | Y = y) 5 By now, we have two set of parameters: i) P(Y = y) = pY (y) for ∀y ∈ [k], and ii) P(Xj = xj | Y = y) = pXj|Y (xj | y) for ∀xj pj(xj | y) denotes the posterior probability of Xj = xj given Y = y. 4.2 Problem Formulation Given a set of m training data {x(i), y(i)}i∈[m], the log-likelihood function can be defined by ℓ(Ω) = log m
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    NB and EM September 27, 2023 3 / 122 Sample Space, Events and Probability A sample space S is the set of all possible outcomes of a (conceptual or physical) random experiment Event A is a subset of the data, but how? Feng Li (SDU) GDA, NB and EM September 27, 2023 33 / 122 Warm Up (Contd.) Given a set of training data D = {x(i), y(i)}i=1,··· ,m The training data are sampled in an i.i.d. manner The 1}x(i)/ m � i=1 1{y(i) = 1} Σ = 1 m m � i=1 (x(i) − µy(i))(x(i) − µy(i))T Proof (see Problem Set 2) Feng Li (SDU) GDA, NB and EM September 27, 2023 50 / 122 Gaussian Discriminant Analysis (Contd
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    language models."} ], }' 或者您可以按照下面所示的方式,使用 openai Python 包中的 Python 客户端: from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = gguf 的 Qwen 的 GGUF 文件。在第一步中,您需要创建一个名为 Modelfile 的文件。该文件的内容如下所示: FROM qwen1_5-7b-chat-q4_0.gguf # set the temperature to 1 [higher is more creative, lower is more coherent] PARAMETER temperature 0.7 PARAMETER }}<|im_end|> {{ end }}<|im_start|>user {{ .Prompt }}<|im_end|> <|im_start|>assistant {{ .Response }}""" # set the system message (续下页) 10 Chapter 1. 文档 Qwen (接上页) SYSTEM """ You are a helpful assistant. """
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    achieves a higher accuracy with the same number of labeled training examples. Data Augmentation is a set of techniques which leverage the original training data to generate more training examples without workflows. We start with data augmentation in the next section. Data Augmentation Data Augmentation is a set of dataset manipulation techniques to improve sample and label efficiencies of deep learning models we can kick-off the training process. The train() is simple. It takes the model, training set and validation set as parameters. It also has two hyperparameters: batch_size and epochs. We use a small batch
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Step 5. Entire Procedure Load Data Neural Network Training Setup dataset = MyDataset(file) tr_set = DataLoader(dataset, 16, shuffle=True) model = MyModel().to(device) criterion = nn.MSELoss() optimizer model and move to device (cpu/cuda) set loss function set optimizer Neural Network Training Loop for epoch in range(n_epochs): model.train() for x, y in tr_set: optimizer.zero_grad() loss.backward() optimizer.step() iterate n_epochs set model to train mode iterate through the dataloader set gradient to zero move data to device (cpu/cuda) forward pass (compute
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    and 5 is D2. Bias is of shape [5]. The shapes are arbitrarily chosen for illustration purposes. # Set the seed so that we get the same initialization. np.random.seed(10007) def get_random_matrix(shape): technologies like the fixed-point SIMD instructions which allows data parallelism, the SSE instruction set in x86 architecture, and similar support on ARM processors as well as on specialized DSPs like the performance improvement was the availability of fixed-point SIMD instructions in Intel's SSE4 instruction set which can parallelize Multiply-Accumulate (MAC) operations. 7 Vanhoucke, Vincent, Andrew Senior, and
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 32. Train-Val-Test-交叉验证

    detect Splitting Train Set Test Set For example 60K 10K test while train train test trade-off Overfitt ing For others judge ▪ Kaggle Train Set Test Set Val Set Unavailable train-val-test train-val-test K-fold cross-validation Train Set Test Set Val Set k-fold cross validation ▪ merge train/val sets ▪ randomly sample 1/k as val set 下一课时 减轻Overfitting Thank You.
    0 码力 | 13 页 | 1.10 MB | 1 年前
    3
共 42 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomationkerastutorialPyTorchReleaseNotesLectureonGaussianDiscriminantAnalysisNaiveBayesAI模型千问qwen中文文档TechniquesMachinePytorchTutorialCompression深度学习入门实战32TrainValTest交叉验证
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩