积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(36)机器学习(36)

语言

全部英语(21)中文(简体)(15)

格式

全部PDF文档 PDF(36)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 36 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    appreciate why we need efficiency in deep learning models today, how to think about it in terms of metrics that you care about, and finally the tools at your disposal to achieve what you want. The subsequent accompanying the given prompts. Both these models have been deployed in production. BERT is used in Google Search to improve relevance of results, and GPT-3 is available as an API for interested users to consume Using the sensitive tweet classifier example, during the deployment phase the user will be concerned about the inference efficiency and should be aware of what is the inference latency per tweet, peak RAM
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    of humans but of mind-numbing behavior." - Stewart Butterfield, Founder (Slack) We have talked about a variety of techniques in the last few chapters to improve efficiency and boost the quality of deep plethora of choices that we face when training a deep learning model in the computer vision domain. A Search Space for n parameters is a n-dimensional region such that a point in such a region is a set of each of those parameters. The parameters can take discrete or continuous values. It is called a "search" space because we are searching for a point in which minimizes (or maximizes) an Evaluation Function
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about large language models."} ], }' 或者您可以按照下面所示的方式,使用 openai Python 包中的 Python 客户端: from openai import "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about large language models."}, ] ) print("Chat response:", chat_response) 1.2.3 下一步 现在,您可以尽情探索 Qwen "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about large language models."} ], }' 或者你可以按照下面所示的方式,使用 openai Python 包中的 Python 客户端: from openai import
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    edu.cn September 6, 2023 Feng Li (SDU) Overview September 6, 2023 1 / 57 Lecture 1: Overview 1 About the Course 2 Machine Learning: What and Why? 3 Categories of Machine Learning 4 Some Basic Concepts training examples selected by a “benevolent” teacher. “Near miss” examples Learner can query an oracle about class of an unlabeled example in the environment Learner can construct an arbitrary example and query guidance. Feng Li (SDU) Overview September 6, 2023 15 / 57 Applications of Machine Learning Document Search Given counts of words in a document, determine what its topic is. Group documents by topic without
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    or ensemble of models to smaller models. The obvious question at this point is: why are we talking about them in the same breadth as efficiency? To answer this question, let’s break down the two prominent demonstrates sample efficiency between two model training setups. The sample efficient model achieves about the same accuracy, but reaches that point in fewer epochs, hence needing fewer samples. Distillation Now, there can be a few different options available to us, based on what we want: 1. We only care about reaching the accuracy goal of 80%: In this case, it is perfectly fine to take the lower labeling and
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    limited number of labeled examples for fine-tuning since the model already knows the general concepts about language, and use the same model across many tasks. Model reuse by itself also is a powerful attribute common self-supervised learning into two broad steps: 1. Pre-training: This step teaches the model about the world it is operating in (language, vision, multimodal) through certain tasks which ensure that in Kaggle and Google Colab (apart from the paid service on Google Cloud). We will be talking more about TPUs in Chapter 10. For now, you can follow our lead. You can also adapt the code to run on GPUs if
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 03. 简单回归案例

    你 好, 梯 度 主讲人:龙良曲 Gradient Descent ▪ ???? = ?2 ∗ sin(?) How about Linear Equations ▪ ? = ? ∗ ? + ? ▪ 1.567 = w * 1 + b ▪ 3.043 = w * 2 + b ▪ W = 1.477 ▪ B = 0.089 Closed Form Solution With ? How to optimize ▪ ???? = σ? ? ∗ ?? + ? − ?? 2 ▪ Minimize ???? ▪ ?′ ∗ ? + ?′ → ? Heuristic Search Convex Optimization https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
    0 码力 | 12 页 | 748.45 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    params = {‘kernel’:[‘linear’, ‘rbf’], ‘C’:[1, 10]} grid_search = GridSearchCV(svc, params, cv=5) grid_search.fit(X_train, y_train) grid_search.best_params_ 在参数网格上进行穷举搜索,方法简单但是搜索速度慢(超参数较多时),且不 容易找到参数空间中的局部最优 {‘kernel’:[‘linear’, ‘rbf’], ‘C’:randint(1, 20)} random_search = RandomizedSearchCV(svc, param_dist, n_iter=10) random_search.fit(X_train, y_train) random_search.best_params_ 在参数子空间中进行随机搜索,选取空间中的100个点进行建模(可从
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    analysis, network/tribe analysis Netflix • Recommendation engine Pinterest • Image recognition search Fraud.net • Detect online payment fraud DataXu • Leverage automated & unattended ML at large scale compile on … Amalgamation Runs in browser with Javascript The first image for search “dog” at images.google.com Outputs “beagle” with prob = 73% within 1 sec Deep RL | Playing
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    PS的参数放置策略 • Ps分布式分片的均衡,避免分片大小不一致  NN网络矩阵按行切分,解决请求包不均衡问题  特征按照Hash方式分布式存储 • 模型并行调超参  grid search  random search PS的多模型训练 • 提高内存使用效率  model group内共享特征key的存储 • 超大规模模型 -> 高扇出的分布式PS • 长尾效应:单个分片的抖动(网络、CPU)对请求影响变大
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
共 36 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterIntroductionAutomationAI模型千问qwen中文文档LectureOverviewTechniquesAdvancedTechnicalReview深度学习PyTorch入门实战03简单回归案例机器课程温州大学Scikitlearn亚马亚马逊AWSAIServices超大大规规模大规模超大规模美团应用建平
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩