积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)机器学习(21)

语言

全部英语(17)中文(简体)(4)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    gives a quick insight into some of the research into distillation related methods. Distillation in Scientific Literature A number of researchers have demonstrated the effectiveness of the distillation technique
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    them. Concretely, a practitioner might want to experiment with at least the following aspects: 1. Computing saliency scores. 2. Deciding on a pruning schedule. 3. Unstructured / Structured sparsity. Seems derivative gives us a clearer insight into how important might be to minimize the loss. Since computing pairwise second-derivatives for all and might be very expensive (even with just weights, this proportion to the mean magnitude of momentum of weights in that layer. There might be other ways of computing saliency scores, but they will all try to approximate the importance of a given weight at a certain
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    observed that, the feature mapping leads to a huge number number of new features, such that i) computing the mapping itself can be inefficient, especially when the new feature space is of much higher dimension; can be expensive (e.g., we have to store all the high-dimensional images of the data samples and computing inner products in the high-dimensional feature space is of considerable overhead). Fortunately, implicitly defines a mapping φ(x) = {x2 1, √ 2x1x2, x2 2} Through the kernel function, when computing the inner product < φ(x), φ(z) >, we do not have to map x and z into the new higher-dimensional
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    which combined the accuracy and latency metrics. It searched for Pareto optimal child networks by computing their latencies 7 Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for defines a ChildManager class which is responsible for spawning child networks, training them, and computing rewards. The layers constant defined in the class indicates the stacking order of the cells. Each the second step, the child network is training on the CIFAR-10 dataset. The third step involves computing reward which is the difference between the accuracy and the rolling average of past accuracies over
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    approaches towards efficiency is compression to reduce data size. For the longest time in the history of computing, scientists have worked tirelessly towards storing and transmitting information in as few bits as Learning model comes from the weights in its layers. Similarly, most of the latency comes from computing the activations. Typically, the weights and activations are 32-bit floating-point values. One of value xmax to 2b-1 (b is the number of bits of precision and b < 32). Notice how this is similar to computing the xmin and xmax of an arbitrary matrix. 2. Then we can map all the values in the weight matrix
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    document is produced based on it. Statement: This document can be freely used for learning and scientific research and is freely disseminated, but it must not be used for commercial purposes. Otherwise
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 星际争霸与人工智能

    Overcoming catastrophic forgetting in neural networks Memory-Augmented Neural Networks Source: Hybrid computing using a neural network with dynamic external memory Work Fun Play Hard
    0 码力 | 24 页 | 2.54 MB | 1 年前
    3
  • pdf文档 Experiment 6: K-Means

    centroids and replace each pixel in the image with its nearest cluster centroid color. Because computing cluster centroids on a 538x538 image would be time- consuming on a desktop computer, you will instead
    0 码力 | 3 页 | 605.46 KB | 1 年前
    3
  • pdf文档 Machine Learning

    17 / 19 Backpropagation Algorithm • The backpropagation equations provides us with a way of computing the gradient of the cost function • Input: Set the corresponding activation a[1] for the input
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    loss loss y_train_tensor Misc • Dynamic VS Static Computation Graph Building the graph and computing the graph happen at the same time. Seems inefficient, especially if we are building the same
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesAdvancedCompressionLectureNotesonSupportVectorMachineAutomationKeras基于Python深度学习星际争霸星际争霸人工智能人工智能ExperimentMeansPyTorchTutorial
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩