积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(44)机器学习(44)

语言

全部英语(27)中文(简体)(17)

格式

全部PDF文档 PDF(44)
 
本次搜索耗时 0.059 秒,为您找到相关结果约 44 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    features:  Consistent, simple and extensible API.  Minimal structure - easy to achieve the result without any frills.  It supports multiple platforms and backends.  It is user friendly framework floatx represent the default data type float32. You can also change it to float16 or float64 using set_floatx() method.  backend denotes the current backend. Suppose, if the file is not created then another neuron to which it is connected. Each neuron processes a small information and then passes the result to another neuron and this process continues. This is the basic method used by our human brain to
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    sine wave is a low precision representation which takes integer values in the range [0, 5]. As a result, the quantized wave requires low transmission bandwidth. Figure 2-3: Quantization of sine waves the low precision domain, because we are losing precision when going to a b-bit integer and as a result values which were close in the high precision domain might end up being mapped to the same value values, with the starting and endpoint defined, along with a step value. This returns the following result. [-10. -7.5 -5. -2.5 0. 2.5 5. 7.5 10. ] Now let’s quantize x. # Quantize the
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    achieves a higher accuracy with the same number of labeled training examples. Data Augmentation is a set of techniques which leverage the original training data to generate more training examples without workflows. We start with data augmentation in the next section. Data Augmentation Data Augmentation is a set of dataset manipulation techniques to improve sample and label efficiencies of deep learning models which translates Spanish to English. This model translates “Estoy muy bien” to “I am fine”. This result can be used to train our original English to Spanish translation model. Let’s dig deeper into each
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    parameter which we need to optimize and x is the (n + 1)- dimensional feature vector 1. Given a training set {x(i)}i=1,··· ,m, our goal is to find the optimal value of θ such that the objective function J(θ) In Matlab/Octave, you can load the training set using the commands x = load ( ’ ex1x . dat ’ ) ; y = load ( ’ ex1y . dat ’ ) ; This will be our training set for a supervised learning problem with n = 1, so x ∈ R2 ). If you’re using Mat- lab/Octave, run the following commands to plot your training set (and label the axes): figure % open a new f i g u r e window plot (x , y , ’ o ’ ) ; ylabel ( ’
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    预览版202112 第 3 章 分类问题 2 集共 70000 张图片。其中 60000 张图片作为训练集?train(Training Set),用来训练模型,剩 下 10000 张图片作为测试集?test(Test Set),用来预测或者测试,训练集和测试集共同组成 了整个 MNIST 数据集。 考虑到手写数字图片包含的信息比较简单,每张图片均被缩放到28 × 28的大小,同时 10 份,每份长度为 1 result = torch.split(x, split_size_or_sections=1, dim=0) len(result) # 返回的列表为 10 个张量的列表 Out[8]: 10 可以查看切割后的某个张量的形状,它应是某个班级的所有成绩册数据,shape 为[35,8], 例如: In [9]: result[0] # 查看第一个班级的成绩册张量 [10]: x = torch.randn([10,35,8]) # 自定义长度的切割,切割为 4 份,返回 4 个张量的列表 result result = torch.split(x, [4,2,2,2] , dim=0) len(result) Out[10]: 4 查看第一个张量的 shape,根据上述的切割方案,它应该包含了 4 个班级的成绩册,shape 预览版202112
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    a certain, say p, percentage of the smallest absolute valued weights in each training epoch. The result of such a training process is p% weights with zero values. Sparse compressed models achieve higher Compute the number of elements to zero. num_elements_to_zero = int(w_1d.shape[0] * sparsity_rate) # Set the respective indices to zero. w_1d[w_1d_sorted_indices[:num_elements_to_zero]] = 0.0 w = np.reshape(w_1d In each pruning round, the algorithm computes the saliency scores for all the weights and resets (set to zero) the fraction of the weights with smallest saliency scores. Then, it proceeds to fine-tune
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    models into smaller and efficient models capable of running on mobile and edge devices. We have also set up a couple of programming projects for a hands-on model optimization experience using these efficient because it controls the number of unique words for which we learn embeddings. A small value for would result in loss of information because most of the words would get mapped to the OOV token. However, if information of the words. The words are all averaged to compute , and we would have got the same result for any other permutation of the words in the context. Hence the name Bag of Words for this family
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    activation functions, which saturate at either 1.0 or -1.0 except a very small range of input. As a result, changing the input variable leads to a very tiny gradient (if any), and when there are a large number train models that performed well on unseen data (in other words, the models generalized well). As a result of this trailblazing work, there has been a race to create deeper networks with an ever larger number Learning Deep learning research has been focused on improving on the State of the Art, and as a result we have seen progressive improvements on benchmarks like image classification, text classification
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    NB and EM September 27, 2023 3 / 122 Sample Space, Events and Probability A sample space S is the set of all possible outcomes of a (conceptual or physical) random experiment Event A is a subset of the data, but how? Feng Li (SDU) GDA, NB and EM September 27, 2023 33 / 122 Warm Up (Contd.) Given a set of training data D = {x(i), y(i)}i=1,··· ,m The training data are sampled in an i.i.d. manner The 1}x(i)/ m � i=1 1{y(i) = 1} Σ = 1 m m � i=1 (x(i) − µy(i))(x(i) − µy(i))T Proof (see Problem Set 2) Feng Li (SDU) GDA, NB and EM September 27, 2023 50 / 122 Gaussian Discriminant Analysis (Contd
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
共 44 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
kerastutorialEfficientDeepLearningBookEDLChapterCompressionTechniquesExperimentLinearRegressionPyTorch深度学习AdvancedArchitecturesReleaseNotesIntroductionLectureGaussianDiscriminantAnalysisNaiveBayes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩