积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)机器学习(19)

语言

全部英语(12)中文(简体)(7)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.040 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    Known Issues ‣ Persistent batch normalization kernels have been disabled due to a known bug during validation. Batch normalization provides correct results and work as expected from users, however, this may Known Issues ‣ Persistent batch normalization kernels have been disabled due to a known bug during validation. Batch normalization provides correct results and work as expected from users, however, this may Known Issues ‣ Persistent batch normalization kernels have been disabled due to a known bug during validation. Batch normalization provides correct results and work as expected from users, however, this may
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    breakdown of the contributions of various transformations on the validation accuracy of a model trained on the CIFAR-10 dataset. Figure 3-7: Validation Accuracy Improvements on the CIFAR-10 dataset for various Classification The oxford_flowers102 dataset contains 1020 labeled examples each in the training and the validation sets. It is a small sample to train a good quality model. So, we use a pre-trained ResNet50 model start by loading the training and validation splits of the dataset. The make_dataset() function takes the name of the dataset and loads the training and the validation splits as follows. import tensorflow_datasets
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    = np.random.random((100, num_classes)) model.fit(x_train, y_train, batch_size=64, epochs=5, validation_data=(x_val, y_val)) 3.1.5.7 带有状态 (stateful) 的相同的栈式 LSTM 模型 有状态的循环神经网络模型中,在一个 batch 的样本处理完成后,其内部状态(记忆)会被记录 3, num_classes)) model.fit(x_train, y_train, batch_size=batch_size, epochs=5, shuffle=False, validation_data=(x_val, y_val)) 快速开始 17 3.2 函数式 API 指引 3.2.1 开始使用 Keras 函数式 API Keras 函数式 API 是定义复杂模型 l_loss', patience=2) model.fit(x, y, validation_split=0.2, callbacks=[early_stopping]) 更多信息请查看 callbacks 文档。 3.3.11 验证集划分是如何计算的? 如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最 后 10%的数据。如果设置为
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    all work in conjunction to produce better models faster. Let's say that we are optimizing the validation loss, , for a given dataset on a model represented by a function with a set of hyperparameters dimensional search space. It indicates that the search adaptively explores the areas with lower validation errors. This approach is also called Configuration Selection because we are aiming to find optimal areas correspond to lower validation errors. The points are labeled with the iteration number indicating that the algorithm adaptively chooses configurations with lower validation errors. (b) This plot shows
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    & Testing Neural Networks Validation Testing Training Guide for training/validation/testing can be found here. Training & Testing Neural Networks - in Pytorch Validation Testing Training Load Data Networks – in Pytorch Define Neural Network Loss Function Optimization Algorithm Training Validation Testing Step 2. torch.nn.Module Load Data torch.nn – Network Layers ● Linear Layer (Fully-connected Networks – in Pytorch Define Neural Network Loss Function Optimization Algorithm Training Validation Testing Step 3. torch.nn.MSELoss torch.nn.CrossEntropyLoss etc. Load Data torch.nn – Loss Functions
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 keras tutorial

    x_train = np.random.random((100,4,8)) y_train = np.random.random((100,10)) Now, create random validation data, x_val = np.random.random((100,4,8)) y_val = np.random.random((100,10)) Create model apply fit() function to train our data: model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_val, y_val)) Create a Multi-Layer Perceptron ANN We have learned to create, compile batch_size=128, epochs=20, verbose=1, validation_data=(x_test, y_test)) Final thoughts We have created the model, loaded the data and also trained
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    bow_model_w2v_history = bow_model_w2v.fit( x_train_vectorized, y_train, batch_size=64, epochs=10, validation_data=(x_test_vectorized, y_test)) Epoch 1/10 313/313 [==============================] - 5s 13ms/step bow_model_no_w2v_history = bow_model_no_w2v.fit( x_train_vectorized, y_train, batch_size=64, epochs=10, validation_data=(x_test_vectorized, y_test)) Epoch 1/10 313/313 [==============================] - 4s 11ms/step cnn_model_w2v_history = cnn_model_w2v.fit( x_train_vectorized, y_train, batch_size=128, epochs=10, validation_data=(x_test_vectorized, y_test)) The model training without pre-trained embeddings follows right
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    Fine-tuning for Text Classification." arXiv, 18 Jan. 2018, doi:10.48550/arXiv.1801.06146. Figure 6-6: Validation error w.r.t. number of training examples for different training methods on IMDb (from scratch, bert_small_from_scratch_classifier_history = bert_small_from_scratch_classifier.fit( x=train_ds, epochs=4, validation_data=test_ds) Epoch 1/4 469/469 [==============================] - 51s 59ms/step - loss: 0.7432 bert_small_pretrained_classifier_history = bert_small_pretrained_classifier.fit( x=train_ds, epochs=4, validation_data=test_ds) Epoch 1/4 469/469 [==============================] - 41s 54ms/step - loss: 0.4249
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014). data, batch size, epochs, validation data and other useful parameters. The fit() method also prints out the training progress per epoch get_compiled_model() model_history = model.fit( train_x, train_y, batch_size=128, epochs=15, validation_data=(test_x, test_y), shuffle=True) return model, model_history.history basic_mnist_model, summary() model_history = model.fit( train_x, train_y, batch_size=batch_size, epochs=epochs, validation_data=(test_x, test_y), shuffle=True) print("Running Final Evaluation") model.evaluate(test_x
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 32. Train-Val-Test-交叉验证

    Set Test Set Val Set Unavailable train-val-test K-fold cross-validation Train Set Test Set Val Set k-fold cross validation ▪ merge train/val sets ▪ randomly sample 1/k as val set 下一课时 减轻Overfitting
    0 码力 | 13 页 | 1.10 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterTechniquesKeras基于Python深度学习AutomationMachinePytorchTutorialkerastutorialArchitecturesAdvancedTechnicalReviewCompression入门实战32TrainValTest交叉验证
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩