积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(26)机器学习(26)

语言

全部英语(16)中文(简体)(10)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.062 秒,为您找到相关结果约 26 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    Keras i Keras ii About the Tutorial Keras is an open source deep learning framework for python. It has been developed by an artificial intelligence researcher TensorFlow, Theano, etc., for creating deep learning models. Overview of Keras Keras runs on top of open source machine libraries like TensorFlow, Theano or Cognitive Toolkit (CNTK). Theano is a python library so python must be installed on your machine. If python is properly installed on your machine, then open your terminal and type python, you could see the response similar as specified below, Python 3
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    generating human-like␣ �→text and are used in a variety of natural language processing tasks..." } ], "source": "unknown" } { "type": "chatml", "messages": [ { "role": "system", "content": "You are a helpful "role": "assistant", "content": "My name is Qwen." } ], "source": "self-made" } 以上提供了该数据集中的每个样本的两个示例。每个样本都是一个 JSON 对象,包含以下字段:type 、 messages 和 source 。其中,messages 是必填字段,而其他字段则是供您标记数据格式和数据来源的可 选字段。messages 或 assistant ,表示消息的角色;content 则是消息的文本内容。而 source 字 段代表了数据来源,可能包括 self-made 、alpaca 、open-hermes 或其他任意字符串。 你需要用 json 将一个字典列表存入 jsonl 文件中: import json with open('data.jsonl', 'w') as f: for sample in samples:
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    interpolation algorithms to address the holes. Figure 3-6: Image Transformations. The source image (center) is taken from Google Open Images Dataset V6. It is authored by Mike Baird and is licensed under CC BY 2 The top-center is a turtle (resized) image from Open Images Dataset V6 and authored by Joy Holland. The bottom-center is a tortoise (resized) from Open Images Dataset V6 and authored by J. P. Both the replaces a section of pixels in an image sample with a section of pixels from another image sample. The source and the destination sections have the same positional offsets. The left image in figure 3-11 shows
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . 59 5.2.1 Dense [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.2 Activation [source] . . . . . . . . . . . . . . . . . . . . . . . Dropout [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.4 Flatten [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.5 Input [source] . . . . . . . . . . . . . . . . 61 5.2.6 Reshape [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2.7 Permute [source] . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    join('..', 'data'), exist_ok=True) data_file = os.path.join('..', 'data', 'house_tiny.csv') with open(data_file, 'w') as f: f.write('NumRooms,Alley,Price\n') # 列名 f.write('NA,Pave,127500\n') # 每行表示一个数据样本 os.path.join(cache_dir, url.split('/')[-1]) if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) if fname # 命中缓存 print(f'正在从{url}下载{fname}...') r = requests.get(url, stream=True, verify=True) with open(fname, 'wb') as f: f.write(r.content) return fname 我们还需实现两个实用函数:一个将下载并解压缩一个zip或tar文件,另一个是将本书中使用的所有数据集
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    missing bit. It is similar to solving an almost finished jigsaw puzzle which has just a couple of open spots. Looking at it, we could tell what the final few pieces would look like. A pretext task requires two sentences and , predict if follows . Figure 6-3: Pre-training and Fine-tuning steps for BERT. Source: Develin et al. For BERT, the pre-training loss is the mean of the losses for the above two tasks Predicting the degree of rotation of a given image. Figure 6-4: Pretext tasks for vision problems. Source: Doersch et al., Gidaris et al.. Once the general model is ready, we can fine-tune it for a specific
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    mapping is transmitted along with the encoded data. Figure 2-1: Huffman Encoding & Huffman Tree. Source When decoding the encoded data, we look up the code from the lookup table to retrieve the symbols left is a high quality image of a cat. The cat on the right is a lower quality compressed image. Source Both the cat images in figure 2-2 might serve their purpose equally well, but the compressed image imread('pia23378-16.jpg') / 255.0) plt.imshow(img) Figure 2-6: Mars Curiosity Rover. Dimensions: 586x1041. Source Now, let’s simulate the process of transmission by quantization, followed by dequantization. We
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    Brand Guidelines PyTorch Brand Guidelines What is PyTorch? PyTorch is an open source machine learning framework that accelerates the path from research prototyping to production deployment.
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    pattern recognition. �������� �������� �� API – �AI���� �� API – �AI���� OpenCV ���������Open Source Computer Vision Library, OpenCV���BSD����� ���C ++�Python�Java�����Windows�Linux�Mac OS�iOS�Android�
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    explore the dataset! First, let's see what classes we have. import os import pprint class_names = open(os.path.join('dbpedia_csv', 'classes.txt')).read().splitlines() num_classes = len(class_names) # Once we have initialized the layer, we can invoke the adapt() method with the dataset to use as a source for building the vocabulary. # This step allows the vectorization layer to build the vocabulary depicting the various approaches to reduce the quadratic complexity of the self-attention layer. (Source: Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2020). Efficient transformers: A survey. arXiv
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
kerastutorialAI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterTechniquesKeras基于Python深度学习动手v2AdvancedTechnicalReviewCompressionPyTorchBrandGuidelinesTensorFlow快速入门实战人脸识别人脸识别Architectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩