积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)机器学习(14)

语言

全部英语(12)中文(简体)(2)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    a vocabulary of the most relevant words. It finds the top N words in a dataset, sorts them in the order of their frequencies, and assigns them an index. This process of mapping free form inputs to integer relationships between the word tokens. Such models treat the sequences with the same words in a different order in an identical manner. But, in reality, they might have a completely different meaning. For instance directly. Figure 4-12 shows that the CNN models perform better than BOW as they benefit from the word order in the sequences. Moreover, pre-trained embeddings achieve a superior accuracy of 96.42% than the
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    required for convergence, they do not alleviate the concerns completely. What should we do to get an order of magnitude savings for both? Self-supervised learning (SSL) helps with learning generalizable and You can also play around with the arrangement of the input, and make the model predict the right order of the elements of . The next question is where do we get the data for creating these tasks though Prediction." arXiv, 19 May. 2015, doi:10.48550/arXiv.1505.05192. Figure 6-4 (a): Detecting relative order of patches derived from the same image. Figure 6-4 (b): Predicting the degree of rotation of a given
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    well. Table 7-2 shows a breakdown of trials for this run. Note that the bracket ids are in reverse order in contrast to the example in table 7-1. The tuner runs a total of 30 trials in three brackets. The techniques are insufficient to model this ordered structure because they do not model the concept of order well. Another limitation of HPO is the search for variable length architectures. HPO requires all inputs to the cell are the outputs of the last two cells. The blocks are predicted in a sequential order. The first block chooses the two hidden inputs from the cell inputs. The second block, however, gets
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 keras tutorial

    layers in a sequential order and so, it is called Sequential API. Most of the ANN also has layers in sequential order and the data flows from one layer to another layer in the given order until the data finally reading a sentence. Reading and understanding a sentence involves reading the word in the given order and trying to understand each word and its meaning in the given context and finally understanding and first value corresponds to first word, second value corresponds to second word, etc., and the order will be strictly maintained. Sequence Analysis is used frequently in natural language processing
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Learning (Contd.) The agent has to exploit what it already knows in order to obtain re- ward, but it also has to explore in order to make better action selections in the future. Dilemma: neither exploitation not a polynomial function, it has an infinite series representation with terms of arbitrarily high order. How can it be good to use a model that we know is false? The Bayesian answer: It is not good. We
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    pruning candidates. Once the saliency scores are assigned, the weights are pruned in the ascending order of their saliency scores. Figure 5-2 describes a sparsity training algorithm. It operates on a pre-trained the less important the weight is for the network. Therefore given a saliency score heuristic, in order to achieve, say, a 60% sparse model, the 60% of the weights with the lowest saliency scores can be error: {reconstruction_error:.4f}.') return decoded_x, computed_centroids, reconstruction_error In order to test our algorithm, let us create a random x like we saw in figure 5-6, and try to run our clustering
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    generator who comes up with novel schemes to fool the fraud detection department, a discriminator, in order to accept its transaction as real. Both the fraud detection department and the fraudster evolve over from the training set. The label values correspond to cat, dog, pigeon and parrot classes in that order. 18 Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network model's output are the logits, it is essentially the same because the logits # will retain the same order as the probabilities. Thus, for the accuracy metric # they are identical. model_wm_10_without_softmax
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    λ)f (y) Feng Li (SDU) GDA, NB and EM September 27, 2023 83 / 122 Convex Functions (Contd.) First-order conditions: Suppose f is differentiable (i.e., its gradient ∇f exists at each point in domf , which domf Feng Li (SDU) GDA, NB and EM September 27, 2023 84 / 122 Convex Functions (Contd.) Second-order conditions: Assume f is twice differentiable (i.t., its Hes- sian matrix or second derivative ∇2f
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    the 22.06 release. If you encounter training issues especially for regression, generative or higher-order models, or by using TF32 operations in pre- or post-processing steps, try to disable TF32 by setting containers corresponding to PyTorch 1.2.0 or previous releases) you might need to re- export the model in order to be able to load it in 22.02. ‣ Torch-TensorRT vgg_qat.ipynb notebook: ‣ There is a missing field are used with 3D convolution, an intermittent silent failure might happen due to dependency on the order of the stream execution. In some cases this might be manifested as NaNs in the output and we recommend
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Chatbots 中对话式交互系统的分析与应用

    task-oriented bot 用户 语音合成 (TTS) 语言产生 (NLG) 语音识别 (ASR) 语言理解 (SLU) 策略优化 (DPO) 状态追踪 (DST) inform(order_op=预订, restaurant_name=云海肴, subbranch=中关村店) request(phone, name) 理解模块 对话管理 模块 产生模块 Spoken Language
    0 码力 | 39 页 | 2.24 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesAdvancedTechniquesTechnicalReviewAutomationkerastutorialLectureOverviewCompressionGaussianDiscriminantAnalysisNaiveBayesPyTorchReleaseNotesChatbots对话交互系统分析应用
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩