积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部英语(9)中文(简体)(2)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.044 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    进阶 28 torchvision 库提供了常用的经典数据集的自动下载、管理、加载与转换功能,配合 PyTorch 的 DataLoader 类,可以方便实现多线程(Multi-threading)、数据变换 (Transformation)、随机打散(Shuffle)和批训练(Training on Batch)等常用数据处理逻辑。 对于常用的经典图片数据集,例如: ❑
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    during the training process, it invariably increases the model training time. A transformation also changes the dataset distribution. It should be chosen to address the dataset deficiencies with the expectation Transformation transform_and_show(image_path, zx=.5) # A value of .5 implies 2X zoom Shear transformation changes one coordinate while keeping the other fixed. In a sense, it is similar to a vertical or a horizontal The key benefit of these transformations is that they are intuitive and can be applied without changes to the model architecture. Their benefit is clear in the low data situations as demonstrated through
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    the current stage of gradient descent. After stepping through many stages, you will see how J(θ) changes as the iterations advance. Now, run gradient descent for about 50 iterations at your initial learning information on plot styles. Answer the following questions: 1. Observe the changes in the cost function happens as the learning rate changes. What happens when the learning rate is too small? Too large? 2. Using
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    to ensure that each bracket gets a comparable budget. Take a look at table 7-1 which shows the changes in the number of configurations as the iterations progress for each bracket. In comparison to successive 81 3 3, 27 1, 81 4 1, 81 Table 7-1: A demonstration of configuration and resource allocation changes across multiple brackets in a Hyperband. Source: Hyperband In chapter 3, we trained a model to The predicted cells can be used to design a small, large or a very large child network without any changes to the controller. NASNet predicts two types of cells: a Normal and a Reduction cell. A normal cell's
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    " Advances in neural information processing systems 2 (1989). As you can deduce, the parameter changes the influence of the previous value of momentum computed at step , which itself was a smooth estimate centroids where the data is. Next, we ran some calculations to verify how the reconstruction error changes as we increase the number of clusters ( ). Figure 5-7 (b) shows the plot. Note that both the x and fine-tune the precision-size tradeoff that we need, whereas with quantization the precision and size changes by a factor of 2 between consecutive values of (the number of bits allocated per value). With that
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    using the float16 option with the MaskRCNN example included in this container. ‣ Due to recent changes on batch norm multiplier initialization (PyTorch commit: c60465873c5cf8f1a36da39f7875224d4c48d7ca) using the float16 option with the MaskRCNN example included in this container. ‣ Due to recent changes on batch norm multiplier initialization (PyTorch commit: c60465873c5cf8f1a36da39f7875224d4c48d7ca) using the float16 option with the MaskRCNN example included in this container. ‣ Due to recent changes on batch norm multiplier initialization (PyTorch commit: c60465873c5cf8f1a36da39f7875224d4c48d7ca)
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    pass (compute output) collect prediction Notice - model.eval(), torch.no_grad() ● model.eval() Changes behaviour of some model layers, such as dropout and batch normalization. ● with torch.no_grad()
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    generated are indeed generalizable and robust (i.e., nothing ties them to a specific task and minor changes in the input don’t significantly change the output), then we can simply add a few additional layers
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    upgrade to stronger lamps. However, the lighting gains would be substantial if we make structural changes to add a couple of windows and a balcony. Similarly, to gain orders of magnitude in terms of footprint
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 keras tutorial

    install keras Keras 7 Quit virtual environment After finishing all your changes in your project, then simply run the below command to quit the environment: deactivate Anaconda
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
PyTorch深度学习EfficientDeepLearningBookEDLChapterTechniquesExperimentLinearRegressionAutomationAdvancedCompressionReleaseNotesMachinePytorchTutorialTechnicalReviewArchitectureskerastutorial
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩