积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(4)机器学习(4)

语言

全部中文(简体)(3)英语(1)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.066 秒,为您找到相关结果约 4 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    7 维度变换 4.8 Broadcasting 4.9 数学运算 4.10 前向传播实战 4.11 参考文献 第 5 章 PyTorch 进阶 5.1 合并与分割 5.2 数据统计 5.3 张量比较 5.4 填充与复制 5.5 数据限幅 5.6 高级操作 5.7 经典数据集加载 5.8 MNIST 测试实战 5.9 参考文献 第 dim=0) len(result) Out[10]: 4 查看第一个张量的 shape,根据上述的切割方案,它应该包含了 4 个班级的成绩册,shape 预览版202112 5.2 数据统计 5 应为[4,35,8],验证一下: In [10]: result[0] Out[10]: # torch.Size([4, 35, 8]) tensor([[[-6 维度将张量切分为 长度为 1 每份。例如,shape 为[10,35,8]的张量,沿着 dim=0 维度进行 unbind 切分,则获 得 10 个 shape 为[35,8]的张量。 5.2 数据统计 在神经网络的计算过程中,经常需要统计数据的各种属性,如最值、最值元素所在位 置、均值、范数等信息。由于张量维度通常较大,直接观察数据很难获得有用信息,因此 通过获取这些张量的统计信
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    归预测未来五分钟进单的平均 配送时长 • 分商圈、分时段、多模型的精 细化预估 • 分布式、多线程、并行计算最 佳分割点,满足海量数据的实 时性要求 • 在供需失衡之前,即实施调控 手段 5 供需平衡 14 5.2 单量调控模型 • 通过价格平衡未来的进单量 和系统可承载的单量 • 基于GBRT对未来进入单量的 实时预测 • 贪心算法求解系统最佳承载 单量 • 根据当前系统状态匹配最佳 的溢价手段使之回归至最大
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    5.1 关于 Keras 层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 核心网络层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.1 Dense • layer.get_input_shape_at(node_index) • layer.get_output_shape_at(node_index) 关于 KERAS 网络层 59 5.2 核心网络层 5.2.1 Dense [source] keras.layers.Dense(units, activation=None, use_bias=True, kernel_ini
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    1.4 效率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2 参数管理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 个网络的串联输出。这也被称 为平行块。 3. 假设我们想要连接同一网络的多个实例。实现一个函数,该函数生成同一个块的多个实例,并在此基础 上构建更大的网络。 Discussions75 5.2 参数管理 在选择了架构并设置了超参数后,我们就进入了训练阶段。此时,我们的目标是找到使损失函数最小化的模 型参数值。经过训练后,我们将需要使用这些参数来做出未来的预测。此外,有时我们希望提取参数,以便 我们首先看一下具有单隐藏层的多层感知机。 74 https://wiki.python.org/moin/GlobalInterpreterLock 75 https://discuss.d2l.ai/t/1827 5.2. 参数管理 197 import torch from torch import nn net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
PyTorch深度学习经典算法人工智能人工智能外卖物流调度应用Keras基于Python深度学习动手v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩