Lecture 6: Support Vector MachineLet K1 and K2 be two kernel functions then the followings are as well: Direct sum: K(x, z) = K1(x, z) + K2(x, z) Scalar product: K(x, z) = αK1(x, z) Direct product: K(x, z) = K1(x, z)K2(x, z) Kernels0 码力 | 82 页 | 773.97 KB | 1 年前3
Lecture Notes on Support Vector MachineLet K1 and K2 be two kernel functions, then the following rules hold: • Direct sum: K(x, z) = K1(x, z) + K2(x, z) • Scalar product: K(x, z) = αK1(x, z) • Direct product: K(x, z) = K1(x, z)K2(x, z) Kernels0 码力 | 18 页 | 509.37 KB | 1 年前3
Lecture Notes on Linear Regressiongradient has its magnitude less than or equal to a predefined threshold (say "), i.e. krf(x)k2 " where k · k2 is `2 norm, such that the values of the objective function di↵er very slightly in successive0 码力 | 6 页 | 455.98 KB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 12 计算性能 503 12.1 编译器和解释器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 12.1.1 多输入多输出通道可以用来扩展卷积层的模型。 • 当以每像素为基础应用时,1 × 1卷积层相当于全连接层。 • 1 × 1卷积层通常用于调整网络层的通道数量和控制模型复杂性。 练习 1. 假设我们有两个卷积核,大小分别为k1和k2(中间没有非线性激活函数)。 1. 证明运算可以用单次卷积来表示。 2. 这个等效的单个卷积核的维数是多少呢? 3. 反之亦然吗? 2. 假设输入为ci × h × w,卷积核大小为co × 讨论影响计算性能的主要因素:命令式编程、符号编程、异步计算、自动并行和多GPU计算。通过学习本章, 对于前几章中实现的那些模型,可以进一步提高它们的计算性能。例如,我们可以在不影响准确性的前提下, 大大减少训练时间。 12.1 编译器和解释器 目前为止,本书主要关注的是命令式编程(imperative programming)。命令式编程使用诸如print、“+” 和if之类的语句来更改程序的状态。考虑下面这段简单的命令式程序:0 码力 | 797 页 | 29.45 MB | 1 年前3
共 4 条
- 1













