积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)机器学习(12)

语言

全部英语(10)中文(简体)(2)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ �→ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] 以前,我们使用 model.chat() (有关更多详细信息,请参阅先前 OpenAI( (续下页) 1.2. 快速开始 5 Qwen (接上页) api_key=openai_api_key, base_url=openai_api_base, ) chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": {"role": "user", "content": "Tell me something about large language models."}, ] ) print("Chat response:", chat_response) 1.2.3 下一步 现在,您可以尽情探索 Qwen 模型的各种用途。若想了解更多,请随时查阅本文档中的其他内容。 1.3 使用 Transformers 实现 Chat
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 keras tutorial

    properly installed on your machine, then open your terminal and type python, you could see the response similar as specified below, Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 the below command to install one by one. numpy pip install numpy you could see the following response, Collecting numpy Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a7420454 4MB 2.8MB/s Keras 5 pandas pip install pandas We could see the following response: Collecting pandas Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a742045
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    advanced.” — Barry Gehm, quoted by Stan Schmidt in ANALOG magazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, millions. Now that we are familiar with generating embeddings, how do we use them? If you have a generic task that has been solved before, it might be worth using its embeddings. However, if you are working arXiv:2010.12821. A common solution for visual domains is to use a model like ResNet pre-trained on a generic dataset like ImageNet, with its weights frozen and being used as a feature extractor. The image is
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    problem, and can be solved by exiting generic QP solvers, e.g., interior point method, active set method, gradient projection method. Unfortunately, the existing generic QP solvers is of low efficiency, especially
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Spanish speaker’s response, “estoy ir mercado”, sufficiently conveys the information that the person is going to the market. A version of this example could be a native english speaker’s response, “I go market”
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    AWS Lambda 1: Understand user intent Amazon API Gateway AWS Lambda 3: Translate REST response into natural language Mobile Hub Custom Connector 2: Invoke a SaaS application or an existing
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    training cases for which its value is known The thing we want to predict is called the target or the response variable Usually, we need training data Feng Li (SDU) Overview September 6, 2023 23 / 57 Supervised
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    by compressing its layers, while trading off some quality in return. Often, these approaches are generic enough to be used across architectures. A classical example is Quantization (see Figure 1-8), which
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    projection method (http://www.ifp.illinois.edu/~angelia/L13_constrained_gradient.pdf) ... Existing generic QP solvers is of low efficiency, especially in face of a large training set Feng Li (SDU) SVM December
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    pre-trained models is to fine-tune them which is quite straightforward because these models have learnt generic representations of the input domain that transfer well across specific tasks in that domain. They
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
AI模型千问qwen中文文档kerastutorialEfficientDeepLearningBookEDLChapterArchitecturesLectureNotesonSupportVectorMachineTechniques亚马亚马逊AWSAIServicesOverviewIntroductionAdvancedTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩