积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(51)机器学习(51)

语言

全部中文(简体)(50)英语(1)

格式

全部PDF文档 PDF(51)
 
本次搜索耗时 0.067 秒,为您找到相关结果约 51 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-06深度学习-优化算法

    1 2023年04月 深度学习-优化算法 黄海广 副教授 2 01 小批量梯度下降 本章目录 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 3 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 1.小批量梯度下降 4 小批量梯度下降 小批量梯度下降(Mini-Batch ?(?) ?? (?) (同步更新?? ,(j=0,1,...,n )) 5 小批量梯度下降 6 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 2.优化算法 7 伦敦温度的例子 days temperature ?1 = 40°F ?2 = 49°F ?3 = 45°F ... ?180 = ?2,再说一次,平 方是针对整个符号的操作。 接着RMSprop会这样更新参数值,?: = ? − ? ?? ???,?: = ? − ? ?? ???, 12 ADAM Adam优化算法基本上就是将Momentum和RMSprop结合在一起 最后更新权重,所以?更新后是?: = ? − ???? corrected ??? corrected+? (如果你只是用 Momentum,使用
    0 码力 | 31 页 | 2.03 MB | 1 年前
    3
  • pdf文档 优化小实例

    2D函数优化实例 主讲人:龙良曲 Himmelblau function Minima Plot Gradient Descent 下一课时 MNIST反向传播 Thank You.
    0 码力 | 7 页 | 542.69 KB | 1 年前
    3
  • pdf文档 房源质量打分中深度学习应用及算法优化-周玉驰

    2019 KE.COM ALL COPYRIGHTS RESERVED 1 周玉驰 贝壳找房 - 数据智能中心 - 策略算法部 AI选房中深度学习的实践及优化 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 3 RESERVED 14 模型演变历程 2019 KE.COM ALL COPYRIGHTS RESERVED 15 模型演变历程 v1.0 初版模型系统 v2.0 深度学习模型 v2.0+ 效果持续优化 XGBoost DNN+RNN 特征建设 v1.0 初版模型系统 2019 KE.COM ALL COPYRIGHTS RESERVED 16 v1.0 - 初版模型系统概览 • 房源特征  可以盘点所有房源质量 2019 KE.COM ALL COPYRIGHTS RESERVED 20 模型演变历程 v1.0 初版模型系统 v2.0 深度学习模型 v2.0+ 效果持续优化 XGBoost DNN+RNN 特征建设 2019 KE.COM ALL COPYRIGHTS RESERVED 21 RNN RNN LSTM 2019 KE.COM ALL COPYRIGHTS
    0 码力 | 48 页 | 3.75 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    2.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.7 训练 . . . . 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ii 3.3.6 定义优化算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.7 训练 . . . 3.7.2 重新审视Softmax的实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.7.3 优化算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.7.4 训练
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 3 3.10 参考文献 第 4 章 PyTorch 基础 4.1 数据类型 4.2 数值精度 4.3 待优化张量 4.4 创建张量 预览版202112 4.5 张量的典型应用 4.6 索引与切片 4.7 维度变换 4.8 Broadcasting 4.9 数学运算 4.10 前向传播实战 4.11 参考文献 第 5 章 PyTorch 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112 7.6 链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    18 应用示例:苏宁易购机器人Sunny,百度度秘,Amazon Echo 19 问题分析与用户分析 网页前端 移动应用前端 系统架构图 会话分析 用户意图识别 检索模块 段落或句 子检索 文档检 索 专业检索接口: 商品参数接口 商品价格接口 商品信息接口 商品卖点接口 促销活动接口 订单信息接口 语法语义分析 用户画像 Json/rest 答案获取和排序模块 答案实体抽取 用户意图识别模块 商品研究 下单购买 订单查询 售后服务 其它闲聊 …… • 用户意图识别是非常 重要的一环。针对不 同的意图, 可以采用 不同的策略回应 • 用户意图识别可以采 用深度学习建模分类 你好,我买了两台空调,想问下安装 咋收费的呀? =》售后服务 问问你,苹果6与6S的运行内存都是1G 吗? =》商品研究 订单能不能改成货到付款? =》订单查询 23 深度学习模型: 从会话历史数据中学习回答问题 • 337,190 问答对 • 填充(Padding)  通过填充将输入文本序列转化为固定长度, 并采用一些特殊符号 (EOS, PAD, GO, UNK等)  通过对答案进行逆序处理优化训练结果:  Q : [ PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    Facebook推荐场景推理成本占AI推理成本的 >72% [ISCA2020 RecNMP] � 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离 线训练,在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先 进⽔平 推荐系统的核⼼特点 � Feature 1(基本特点) 1.1 User与推荐系统交互,7*24⼩时 流式学习 1.2 Item和User新增,离开/遗忘, Embedding空间动态变化。 ⼤规模推荐模型深度学习系统基本解决维度 分布式 系统 ⼤规模 模型 优化 算法 1. ⾼性能 2. 效果⽆ 损的优化 � Feature 1(基本特点) � Feature 2(数据的时空 特点) � Feature3(机器学习 的特点) ⼤规模推荐模型深度学习系统基本解决维度 分布式 系统 ⼤规模 模型 优化 算法 1. ⾼性能 2. 效果⽆ 损的优化 � Feature 1(基本特点) � 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 查询Sparse Table 查询Dense Tensor 更新参数 � 常规训练流⽔线 样本读取 样本解析 参数拉取 参数更新 查询Sparse Table 查询Dense Tensor
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    估值11亿美元 12 字节跳动 跨媒体分析推理技术、深度学习、自 然 语言处理、图像识别 资讯 中国 2012年 Pre-IPO轮融资 估值750亿美元 13 Netflix(网飞) 视频图像优化、剧集封面图片个性 化 、视频个性化推荐 媒体及内容 美国 1997年 上市 市值1418亿美元 14 Graphcore 智能芯片技术、机器学习 芯片 英国 2016年 D轮融资 估值17亿美元 Networks 深度学习、机器学习技术 物联网 日本 2016年 C轮融资 估值20亿美元 9 机器学习的范围 10 • 给定数据的预测问题 ✓ 数据清洗/特征选择 ✓ 确定算法模型/参数优化 ✓ 结果预测 • 不能解决什么 ✓ 大数据存储/并行计算 ✓ 做一个机器人 机器学习可以解决什么问题 11 机器学习发展史 总的来说,人工智能经历了逻辑推理、知识工程、机器 学习三个阶段。 用于描述和解决智能体(agent)在与环境的交 互过程中通过学习策略以达成回报最大化或实现 特定目标的问题 。 2. 机器学习的类型-强化学习 19 ✓ 机器学习方法 ✓ 模型 ✓ 损失函数 ✓ 优化算法 ✓ 模型评估指标 机器学习的概念 20 机器学习的概念-模型 机器学习首先要考虑使用什么样的模型。 模型的类别,大致有两种:一是概率模型(Probabilistic Model)和非概率模型
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    Keras 模型? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.6.1 保存/加载整个模型(结构 + 权重 + 优化器状态) . . . . . . . . . 28 3.3.6.2 只保存/加载模型的结构 . . . . . . . . . . . . . . . . . . . . . . . . 29 3 . . . . . . . . . . . . . . . 138 9 优化器 Optimizers 139 9.1 优化器的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.2 Keras 优化器的公共参数 . . . . . . . . . . . . . . . 操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 • 模块化。模型被理解为由独立的、完全可配置的模块构成的序列或图。这些模块可以以尽 可能少的限制组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函 数、正则化方法,它们都是可以结合起来构建新模型的模块。 • 易扩展性。新的模块是很容易添加的(作为新的类和函数),现有的模块已经提供了充足 的示例。由于能够轻松地创建可以提高表现力的新模块,Keras
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    a d i e n t 参 数 , 使 其 形 状 与 函 数 L形状一样,其权重一般为1(也可 小于1) 使 用 t e n s o r.grad查 看 叶 子 节 点 的 梯 度 如 果 需 要 保 存 非 叶 子 节 点 梯 度 , 需 使 对 应 张 量 调 用 retain_graph () 使 用 t e n s o r.grad.zero_() 清 除 张 量 梯 只做简单的数据复制,既不数据 共享,也不对梯度共享,从此两 个张量无关联。 2. Autograd自动求导 19 2. Autograd自动求导 在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经 网络的优化提供了关键数据。 但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求 人们解出复杂、高维的方程是不现实的。 这就是自动求导出现的原因,当前最流行的深度学习框架如PyTorch 、Tens 所有依赖它的节点 requires_grad也会是True。 换言之,如果一个节点依赖的所有节点都不需要求导,那么它的 requires_grad也会是False。在反向传播的过程中,该节点所在的子图会被 排除在外。 21 2. Autograd自动求导 Function类 我们已经知道PyTorch使用动态计算图(DAG)记录计算的全过程,DAG的节 点是Function对象,边表示
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
共 51 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
机器学习课程温州大学06深度优化算法PyTorch入门实战22实例房源质量打分应用周玉驰动手v2深度学习电子商务电子商务推荐模型基础特点大规规模大规模系统设计01引言Keras基于Python03
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩