积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)机器学习(22)

语言

全部中文(简体)(13)英语(9)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.050 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    frequency) from the given training corpus. We would learn embeddings of dimensions each (where we can also view 10 We are dealing with word tokens as an example here, hence you would see the mention of words and embedding (referred to as the extracted features, but essentially it is the same thing). Here is a document describing the use of TFHub models for this purpose. You only need to train a small classification
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    编码函数,depth 设置向量长度 out = torch.zeros(label.size(0), depth) idx = torch.LongTensor(label).view(-1, 1) out.scatter_(dim=1, index=idx, value=1) return out y = torch.tensor([0,1,2 # x: [b, 1, 28, 28], y: [512] # 打平操作:[b, 1, 28, 28] => [b, 784] x = x.view(x.size(0), 28*28) # 送入网络模型,=> [b, 10] out = model(x) # 标签进行 one-hot LecunYann, BottouLéon, BengioYoshua, & HaffnerPatrick. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, (页 2278-2324). PaszkeAdam, GrossSam, MassaFrancisco, LererAdam
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    the method of creating and quantizing GGUF files in quantization/llama.cpp. You can refer to that document for more information. 1.4.4 PPL 评测 llama.cpp 为我们提供了评估 GGUF 模型 PPL 性能的方法。为了实现这一点,你需要准备一个数据集,比如 "skypilot-nightly[aws,gcp]" 随后,您需要用如下命令确认是否能使用云: sky check For more information, check the official document and see if you have set up your cloud accounts correctly. Alternatively, you can also use the official �→automatically run code to download the picture ' + \ 'and select an image operation from the given document to process the image' # Add a custom tool named my_image_gen: @register_tool('my_image_gen') class
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    com/org/a-li-ling-jie 3. EasyRec: https://github.com/alibaba/EasyRec 4. 推荐解决方案: https://help.aliyun.com/document_detail/161927.html 5. EasyCV:https://github.com/alibaba/EasyCV 6. EasyNLP: https://github.com/alibaba/EasyNLP 8. DSW: https://help.aliyun.com/document_detail/194831.html 9. DLC: https://help.aliyun.com/document_detail/165124.html 10. EAS: https://help.aliyun.com/document_detail/110980.html 11. Blade: https://help aliyun.com/document_detail/205128.html 12. PaiFlow: https://help.aliyun.com/document_detail/438027.html 13. Alink: https://github.com/alibaba/Alink 14. Whale: https://help.aliyun.com/document_detail/428527
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    including tutorials, documentation, and examples, see: ‣ PyTorch website ‣ PyTorch project This document provides information about the key features, software enhancements and improvements, known issues with March 2017 updates Known Issues There are no known issues in this release. Notice This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Machine Learning Document Search Given counts of words in a document, determine what its topic is. Group documents by topic without a pre-specified list of topics. Many words in a document, many, many documents classification problem, we want to predict the class of an item. The type of tumor, the topic of a document, the semantics contained in an image, whether a customer will purchase a product. For a regression
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    reshape 函数之外,还有另外一个基于 tensor 的维度 转换方法 tensor.view(), 它的用法代码演示如下: x = torch.randn(4, 4) print(x.size()) x = x.view(-1, 8) print(x.size()) x = x.view(1, 1, 4, 4) print(x.size()) 运行结果如下: torch.Size([4 Size([2, 8]) torch.Size([1, 1, 4, 4]) 其中 torch.randn(4, 4) 是创建一个 4x4 的随机张量;x.view(-1, 8) 表示转换为每行八列的,-1 表示自动计算行数;x.view(1, 1, 4, 4) 表示转换为 1x1x4x4 的四维张量。其中 torch.size 表示 输出数组维度大小。 ● 其它属性操作 通道交换与寻找最大值是 print(x.size()) x = torch.tensor([2., 3., 4.,12., 3., 5., 8., 1.]) print(torch.argmax(x)) x = x.view(-1, 4) print(x.argmax(1)) 运行结果如下: torch.Size([5, 5, 3]) torch.Size([3, 5, 5]) tensor(3) tensor([3
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    relu(self.conv1(x)), 2) x = F.max_pool2d(F.relu(self.conv2(x)), 2) # 改变数据的维度 x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) MSELoss是一个比较简单的损失函数,它计算输出和目标间的均方误差, 例如: output = net(input) target = torch.rand(10) target = target.view(1, -1) criterion = nn.MSELoss() loss = criterion(output, target) print(loss) tensor(0.4526, gra .grad_fn 属性,将看到如下所示的计算图。 input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d -> view -> linear -> relu -> linear -> relu -> linear -> MSELoss -> loss 所以,当我们调用 loss.backward() 时,整张计算图都会
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    ndim x.dim() x.size x.nelement() 形状操作 x.reshape x.reshape(相当于 tensor.contiguous().view()); x.view x.flatten x.view(-1);nn Flatten() 类型转换 np.floor(x) torch.floor(x); x.floor() 比较 np.less x.lt np.less_equal/np
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 09. 维度变换

    Tensor维度变换 主讲人:龙良曲 Operation ▪ View/reshape ▪ Squeeze/unsqueeze ▪ Transpose/t/permute ▪ Expand/repeat 2 View reshape ▪ Lost dim information 3 Flexible but prone to corrupt 4 Squeeze v.s. unsqueeze
    0 码力 | 16 页 | 1.66 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesPyTorch深度学习AI模型千问qwen中文文档阿里云上深度学习建模实践程孟力ReleaseNotesLectureOverviewOpenVINO开发实战系列教程第一一篇第一篇pytorch入门笔记03神经网络神经网神经网络机器课程温州大学09维度变换
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩