动手学深度学习 v2.0让我们熟悉一下导数的几个等价符号。给定y = f(x),其中x和y分别是函数f的自变量和因变量。以下表达 式是等价的: f ′(x) = y′ = dy dx = df dx = d dxf(x) = Df(x) = Dxf(x), (2.4.2) 其中符号 d dx和D是微分运算符,表示微分操作。我们可以使用以下规则来对常见函数求微分: • DC = 0(C是一个常数) • Dxn = nxn−1(幂律(power 为了微分一个由一些常见函数组成的函数,下面的一些法则方便使用。假设函数f和g都是可微的,C是一个 常数,则: 常数相乘法则 d dx[Cf(x)] = C d dxf(x), (2.4.3) 加法法则 d dx[f(x) + g(x)] = d dxf(x) + d dxg(x), (2.4.4) 乘法法则 d dx[f(x)g(x)] = f(x) d dx[g(x)] + g(x) d dx[f(x)]0 码力 | 797 页 | 29.45 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationimpact when both are used together? We have four options: none, quantization, clustering, and both. We would need to train a model with each of these four options to make an informed decision. Blessed with0 码力 | 33 页 | 2.48 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectureslimited by the user’s bandwidth, and the memory available might be limited too. Let’s see what our options are: 1. The embedding table is too large on-disk: We can use a smaller vocabulary, and see if the0 码力 | 53 页 | 3.92 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques5,000 labels and 10,000 steps when compared to the baseline). Now, there can be a few different options available to us, based on what we want: 1. We only care about reaching the accuracy goal of 80%:0 码力 | 56 页 | 18.93 MB | 1 年前3
keras tutorial(Dense API) with softmax activation (using Activation module) function. Keras also provides options to create our own customized layers. Customized layer can be created by sub-classing the Keras.Layer0 码力 | 98 页 | 1.57 MB | 1 年前3
共 5 条
- 1













