积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)机器学习(10)

语言

全部英语(9)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Support Vector Machine

    holds with equality, ω∗ actually minimizes L(ω, α∗, β ∗) over ω. 2.2.3 Karush-Kuhn-Tucker (KKT) Conditions We assume that the objective function and the inequality constraint functions are differentiable domains of the primal problem and the dual problem, respectively, we have the primal feasibility conditions (18)∼(18) and the dual feasibility condition (20) holds gi(ω∗) ≤ 0, ∀i = 1, · · · , k (18) hj(ω∗) hj(ω∗) = 0, ∀j = 1, · · · , l (19) α∗ i ≥ 0, ∀i = 1, · · · , k (20) (21) All these conditions (16)∼(20) are so-called Karush-Kuhn-Tucker (KKT) condi- tions. For any optimization problem with differentiable
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    December 28, 2021 15 / 82 Convex Optimization Review Optimization Problem Lagrangian Duality KKT Conditions Convex Optimization S. Boyd and L. Vandenberghe, 2004. Convex Optimization. Cambridge university Karush-Kuhn-Tucker (KKT) Conditions Let ω∗ and (α∗, β ∗) by any primal and dual optimal points wither zero duality gap (i.e., the strong duality holds), the following conditions should be satisfied Stationarity: problems Strong duality: d∗ = p∗ Does not hold in general (Usually) holds for convex problems Conditions that guarantee strong duality in convex problems are called constraint qualifications Feng Li
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    where xj ∈ {0, 1} for ∀j ∈ [n], we have vj = 2 for ∀j. Note that, p(y) satisfies the following two conditions p(y) ≥ 0, ∀y ∈ [k] k � y=1 p(y) = k � y=1 �m i=1 1(y(i) = y) + 1 m + k = �k y=1 �m i=1 vector given that the data sample is labeled by y. Also, p(t | y) should respect the following conditions: i) p(t | y) ≥ 0, and ii) �v t=1 p(t | y) = 1. We also define p(y) = P(Y = y) for ∀y ∈ [k]. We its label being z(i) ∈ Ω (i.e., Qi(z(i)) = P(Z(i) = z(i))). Qi(z(i)) should satisfy the following conditions: � z(i)∈Ω Qi(z(i)) = 1, Qi(z(i)) ≥ 0, ∀z(i) ∈ Ω Also, suppose φ(Z(i)) is a function of random
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    Bayes’ theorem (or Bayes’ rule) describes the probability of an event, based on prior knowledge of conditions that might be related to the event P(A | B) = P(B | A)P(A) P(B) In the Bayesian interpretation Feng Li (SDU) GDA, NB and EM September 27, 2023 83 / 122 Convex Functions (Contd.) First-order conditions: Suppose f is differentiable (i.e., its gradient ∇f exists at each point in domf , which is open) Feng Li (SDU) GDA, NB and EM September 27, 2023 84 / 122 Convex Functions (Contd.) Second-order conditions: Assume f is twice differentiable (i.t., its Hes- sian matrix or second derivative ∇2f exists at
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    learning_rate (Float) {'default': 0.0001, 'conditions': [], 'min_value': 0.0001, 'max_value': 0.01, 'step': None, 'sampling': 'log'} dropout_rate (Float) {'default': 0.1, 'conditions': [], 'min_value': 0.1, 'max_value':
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    information is current and complete. NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    Linear Regression September 13, 2023 15 / 31 GD Algorithm (Contd.) Stopping criterion (i.e., conditions to convergence) the gradient has its magnitude less than or equal to a predefined thresh- old
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    underexposed photos, and contains a small number of underexposed images that cover limited lighting conditions. Our Dataset Quantitative Comparison: Our Dataset Method PSNR SSIM HDRNet 26.33 0.743 DPE
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    57 Supervised Regression Problems Predict tomorrow’s stock market price given current market conditions and other possible side information Predict the age of a viewer watching a given video on YouTube
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    -th residual block for a network with five blocks and the final probability ( ). Under these conditions, the expected network depth during training reduces to . By expected network depth we informally
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
LectureNotesonSupportVectorMachineGaussianDiscriminantAnalysisNaiveBayesEfficientDeepLearningBookEDLChapterAutomationPyTorchReleaseLinearRegression深度学习图像视频处理技术沈小勇OverviewAdvancedTechniquesTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩