积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)机器学习(18)

语言

全部英语(9)中文(简体)(9)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.047 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    RN-08516-001_v23.07 | July 2023 PyTorch Release Notes PyTorch RN-08516-001_v23.07 | ii Table of Contents Chapter 1. PyTorch Overview......................................................... 515.65 (or later R515), 525.85 (or later R525), or 530.30 (or later R530). The CUDA driver's compatibility package only supports particular drivers. Thus, users should upgrade from all R418, R440, R460 For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades. GPU Requirements Release 23.07 supports CUDA compute
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    animals. The higher the value, the more that particular feature represents the given animal. In Table 4-1 we manually assigned values for the cute and dangerous features for six animals2, and we are calling cat (0.95, 0.05) snake (0.01, 0.9) bear (0.5, 0.95) raccoon (0.5, 0.5) mouse (0.01, 0.2) Table 4-1: A table consisting of embeddings of the various animals, using two features (cute and dangerous), each take a value between 0.0 and 1.0. We manually picked these values for illustration. Going through table 4-1, cat and dog have high values for the ‘cute’ feature, and low values for the ‘dangerous’ feature
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    familiarize ourselves with these techniques later in this chapter. Table 3-1 presents a concise summary of both, sample and label efficiency. Table 3-1: A quick summary of sample and label efficiencies. Both Using learning techniques to build smaller and faster efficient models Overall, as summarized in table 3-1, improving sample efficiency enables faster model training, and label efficiency is useful to scenario which illustrates how learning techniques are leveraged to reduce the model footprint. Table 3-2 shows a comparison of vanilla models (without the learning techniques) with the models that employ
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    org/licenses/by-sa/4.0/deed.en Data Volume © 2018 Bloomberg Finance L.P. All rights reserved. Back in 2016 – Table Extraction © 2018 Bloomberg Finance L.P. All rights reserved. Tables Look Different © 2018 Bloomberg reserved. Table Detection – How Do We Do It © 2018 Bloomberg Finance L.P. All rights reserved. Table Detection – How Do We Do It © 2018 Bloomberg Finance L.P. All rights reserved. Table Detection – https://creativecommons.org/licenses/by-sa/4.0/deed.en © 2018 Bloomberg Finance L.P. All rights reserved. Table Detection Is Object Detection Deep learning has yielded rapid advancements in computer vision ©
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 查询Sparse Table 查询Dense Tensor 更新参数 � 常规训练流⽔线 样本读取 样本解析 参数拉取 参数更新 查询Sparse Table 查询Dense Tensor 训练任务 成本 内存是主要瓶颈 > Embedding table可以设计得更⼩么?Double Hashing Embedding Table与第⼀层fc可以看作低秩矩阵分解 亿 亿 512 512 9 9 原始矩阵 矩阵分解 压缩⼿段除了量化和稀疏化,还有什么?因式分解 问题: 1. Embedding Table的信息仍然⾮常稀疏 2. 直接压缩key空间和缩⼩value⻓度都会导致模型效果下降
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    aggregate, this would be better than encoding each symbol with the same number of bits. The lookup table (figure 2-1 middle) that contains the symbol-code mapping is transmitted along with the encoded data Encoding & Huffman Tree. Source When decoding the encoded data, we look up the code from the lookup table to retrieve the symbols back. Since the codes are unique for each symbol (in fact, they are prefix we can easily construct the original sequence of symbols from the encoded sequence and the lookup table. Refer the wikipedia article on arithmetic coding to learn about lossless coding schemes. The lossy
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    r is smaller and vice-versa to ensure that each bracket gets a comparable budget. Take a look at table 7-1 which shows the changes in the number of configurations as the iterations progress for each bracket and statistics. PMLR, 2016. 1 27, 3 9, 9 3, 27 2, 81 2 9, 9 3, 27 1, 81 3 3, 27 1, 81 4 1, 81 Table 7-1: A demonstration of configuration and resource allocation changes across multiple brackets in achieves a better accuracy as well. Table 7-2 shows a breakdown of trials for this run. Note that the bracket ids are in reverse order in contrast to the example in table 7-1. The tuner runs a total of 30
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    elements is . Assuming , and as usual, the compression ratio using the above formula computes to: . Table 5-1 lists the compression ratios for different values of , using the above values of and . Number between the original tensor and the decoded tensor, as we did when working with quantization. 128 4.0 Table 5-1: Number of centroids v/s the compression ratio, assuming , and . As we increase the value of forward pass for them is a simple lookup in the table using the provided index. The embeddings themselves can be saved in an optimized format. Either the table in its entirety can be converted back to the
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.1.4 make_sampling_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 文本预处理 . . . . . . . . . . . vocabulary_size,window_size=4, negative_samples=1.0, shuffle=True, categorical=False, sampling_table=None, seed=None) 生成 skipgram 词对。 该函数将一个单词索引序列(整数列表)转化为以下形式的单词元组: •(单词, 同窗口的单词),标签为 1(正样本)。 •(单词 of Word Representations in Vector Space 参数 • sequence: 一个编码为单词索引(整数)列表的词序列(句子) 。如果使用一个 sampling_table,词索引应该以一个相关数据集的词的排名匹配(例如,10 将会编码为 第 10 个最长出现的词)。注意词汇表中的索引 0 是非单词,将被跳过。 • vocabulary_size: 整数,最大可能词索引
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    vocab,?) Embedding 层实现起来非常简单,构建一个 shape 为[?vocab,?]的查询表对象 table,对 预览版202112 11.1 序列表示方法 3 于任意的单词编号?,只需要查询到对应位置上的向量并返回即可: ? = table[?] Embedding 层是可训练的,它可放置在神经网络之前,完成单词到向量的转换,得到的表 示向量可以继续 层内部的查询表 table: In [1]: # 打印内部查询表张量 for name,p in net.named_parameters(): print(name, p.shape) print('table:', next(net.parameters())) Out[1]: weight torch.Size([10, 4]) table: Parameter images, labels, table = load_pokemon('pokemon', 'train') print('images:', len(images), images) print('labels:', len(labels), labels) print('table:', table) 构建 Dataset 对象,并完成数
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterArchitecturesTechniquesQCon北京2018键盘输入键盘输入神经网络神经网神经网络深度学习彭博应用李碧野推荐模型基础特点大规规模大规模系统设计CompressionAutomationAdvancedKeras基于Python深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩