积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)机器学习(20)

语言

全部英语(12)中文(简体)(8)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.043 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    data for aligning to human preferences. Qwen is capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, playing as AI agent, etc. 最新版本 AutoTokenizer device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto" "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) # Directly use
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    models. Over the years, a wide range of techniques have been developed to facilitate input data generation and transformation. These techniques help to overcome dataset shortcomings like: small size, skewed categories: label invariant transformations, label mixing transformations and synthetic sample generation. The label invariant techniques transform the input samples. The transformed samples are labeled predict a ‘dog’ with a probability of 30% and a ‘hamster’ with a probability of 70%. The sample generation techniques use models to generate samples for labels. Consider a training sample for English to
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    abstract concept). Here is a quick recipe to train embedding-based models: 1. Embedding Table Generation: Generate the embeddings for the inputs using machine learning algorithms of your choice. 2. Embedding 4-4: A high-level visualization of the embedding-based model training lifecycle. We start with generation of the embedding table, followed by looking up the embeddings for the inputs. Finally, we train train a model that takes the embeddings as input. In our petting zoo example: ● Embedding Table Generation: We have generated the embedding table. ● Embedding Lookup: For each input example, we will look
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    sequence of tokens, and the output is a sequence of tokens too). It excels in natural language generation and hence has been 8 BERT model on Tensorflow-Hub: https://tfhub.dev/tensorflow/bert_en_uncas deployment of such models is the GitHub’s Copilot software9 where GPT-3 is used for auto-completing code snippets with an IDE. End-users can also use GPT-3 API10 to build their own applications. Given the Project: Using Pre-trained Language Models for News Classification That was a lot of talk without any code. Our overarching goal with self-supervised learning is to be more efficient in the number of labels
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 keras tutorial

     Core Layers  Convolution Layers  Pooling Layers  Recurrent Layers A simple python code to represent a neural network model using sequential model is as follows: from keras.models import your root directory under .keras/keras.json file. Keras backend module can be imported using below code: >>> from keras import backend as k If we are using default backend TensorFlow, then the below call and compute_output_shape completes the creating a customized layer. The final and complete code is as follows: from keras import backend as K from keras.layers import Layer Keras
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Chatbots 中对话式交互系统的分析与应用

    作为序列决策过程进行优化:增强学习 Milica Gašić (2014) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 Steve Young (2016) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 • Semantically Conditioned Conditioned LSTM (SC-LSTM) Tsung-Hsien Wen (2016) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 • Semantically Conditioned LSTM (SC-LSTM) Tsung-Hsien Wen (2016) Task-Bot: 其他框架 • Microsoft: 让产生的答复与之前的不同 • 语义要连贯 • 加入互信息:同时考虑从answer到question的概率 Deep Reinforcement Learning for Dialogue Generation 闲聊机器人:其他因素 • 小心你的训练数据 • 如何引入上下文信息 • 如何加入外部信息 • 如何产生个性化答复 总结:三个Bot框架 • IR-Bot(成熟度: ) • 基于检索/排序的流程,历史悠久,技术成熟
    0 码力 | 39 页 | 2.24 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    Applications HD video generation from low-res sources Motivation 35 Old and Fundamental Several decades ago [Huang et al, 1984] → near recent Many Applications HD video generation from low-res sources and Fundamental Several decades ago [Huang et al, 1984] → near recent Many Applications HD video generation from low-res sources Video enhancement with details Text/object recognition in surveillance videos
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    Capital One “A highly scalable solution, it also offers potential to speed time to market for a new generation of voice and text interactions such as our recently launched Capital One skill for Alexa.” “As
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    CrossEntropy SmoothL1 DiceLoss Contrasive RCNNHead MaskHead SeqHead Vit Swin Retrieval Image Generation Video Caption EasyVision: 图像视频算法库 Bert TextInput Optim izer 性能优越:  分布式存储  分布式查询 功能完备: 
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    果,具有时间维度信息的 3D 视频理解任务受到越来越多的关注。常见的视频理解任务有 视频分类、行为检测、视频主体抽取等。常用的模型有 C3D、TSN、DOVF、TS_LSTM 等。 图片生成(Image Generation) 是指通过学习真实图片的分布,并从学习到的分布中采样 而获得逼真度较高的生成图片。目前常见的生成模型有 VAE 系列、GAN 系列等。其中 GAN 系列算法近年来取得了巨大的进展,最新 GAN Anaconda to my PATH environment variable”一项,这样可以通过命令行方式调用 Anaconda 程序。如图 1.23 所示,安装程序 询问是否连带安装 VS Code 软件,选择 Skip 即可。整个安装流程约持续 5 分钟,具体时间 预览版202112 第 1 章 人工智能绪论 18 需依据计算机性能而定。 图 1.22 Anaconda 语言编写程序的方式非常多,可以使用 ipython 或者 ipython notebook 方式 交互式编写代码,也可以利用 Sublime Text、PyCharm 和 VS Code 等综合 IDE 开发中大型 项目。本书推荐使用 PyCharm 编写和调试,使用 VS Code 交互式开发,这两者都可以免费 使用,用户自行下载安装,并配置好 Python 解释器即可。限于篇幅,这里不再赘述。 预览版202112
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
AI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterTechniquesArchitecturesAdvancedTechnicalReviewkerastutorialChatbots对话交互系统分析应用深度学习图像视频处理技术沈小勇亚马亚马逊AWSAIServicesOverview阿里云上建模实践程孟力PyTorch深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩