《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesclipping side effect. An RGB image has a channel value range . Any channel values that exceed 255 after the 2x brightness transformation are clipped to 255 The channel values , after the 2x transformation transform_and_show(image_path, brightness=2) Channel Intensity Shift shifts the RGB channel values uniformly across all channels. where c represents a channel and s is the shift amount. As opposed to the the brightness transformation which scales the intensity values, channel shift adds or subtracts the shift amount. An add shift causes the minimum intensity value equal to or greater than s. A subtract0 码力 | 56 页 | 18.93 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationthe training batch size. Other aspects of the training pipeline like data augmentation, layer and channel configurations can also be parameterized using hyperparameters. For example, when using image data method sends the input through a convolution layer with a fixed channel size to ensure that the inputs to each cell block have identical channel dimensions. """ return layers.Conv2D(self.channels, 1, padding='same')(inp) standardize the two branch inputs to an appropriate feature space and channel size. First, we project both the branches to identical channel dimensions to support addition combination operation. Next, we project0 码力 | 33 页 | 2.48 MB | 1 年前3
keras tutorialdata format. The data format may be to two type, channel_last: channel_last specifies that the channel data is placed as last entry. Here, channel refers the actual data and it will be placed in the dimension 128 refers the actual values of the input. This is the default setting in Keras. channel_first: channel_first is just opposite to channet_last. Here, the input values are placed in the second0 码力 | 98 页 | 1.57 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression TechniquesAn entire kernel is pruned when the pruning is performed at 2-D granularity. We prune an entire channel for 3-D pruning. Figure 5-4 shows these granularities visually. Figure 5-4: An example of sparsified layout for a convolutional layer which receives a 3-channel input. Each individual 3x3 matrix is a kernel. A column of 3 kernels represents a channel. As you might notice, with such structured sparsity0 码力 | 34 页 | 3.18 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques0]. We need to transmit a collection (vector) of these variables over an expensive communication channel. Can we use quantization to reduce transmission size and thus save some costs? What if it did not Typically with an RGB image there are 3 channels, but since there is a grayscale image there is only one channel which the dataset does not create explicitly. The normalization and reshaping of the data is done0 码力 | 33 页 | 1.96 MB | 1 年前3
Keras: 基于 Python 的深度学习库作为其张量操作库。请跟随这些指引来配置其他 Keras 后端。 1.6 技术支持 你可以提出问题并参与开发讨论: • Keras Google group。 • Keras Slack channel。使用 这个链接 向该频道请求邀请函。 你也可以在 Github issues 中张贴漏洞报告和新功能请求(仅限于此)。注意请先阅读规范 文档。 KERAS: 基于 PYTHON 的深度学习库 "float32", "backend": "tensorflow" } 它包含以下字段: • 图 像 处 理 层 和 实 用 程 序 所 使 用 的 默 认 值 图 像 数 据 格 式 (channel_last 或 channels_first)。 • 用于防止在某些操作中被零除的 epsilon 模糊因子。 • 默认浮点数据类型。 • 默认后端。详见 backend 文档。 同 样, width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False, vertical_flip=False,0 码力 | 257 页 | 1.19 MB | 1 年前3
Lecture 1: OverviewMarket basket analysis (e.g. diapers and beer) Medical information mining (e.g. migraines to calcium channel blockers to magnesium) Computational studies of learning may help us understand learning in humans0 码力 | 57 页 | 2.41 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112状为[?, ℎ, ?]的张量 来表示,其中?代表了批量大小(Batch Size),这里?设置为 512;多张彩色图片可以使用形 状为[?, ℎ, ?, ?]的张量来表示,其中?表示通道数量(Channel),彩色图片? = 3。通过 PyTorch 提供的 torch.utils.data.DataLoader 类可以方便完成模型的批量训练,只需要调用设 预览版202112 第 3 章 分类问题 为改变 视图的一种特殊方式。 考虑一个具体例子,一张28 × 28大小的灰度图片的数据保存为 shape 为[28,28]的张 量,在 batch 维度后插入一新维度,定义为通道数维度 channel,此时张量的 shape 变为 [1,28,28],实现如下: In [72]: x = torch.randint(0,10,[28,28]) # 产生 28x28 矩阵,shape 同样的方法,可以继续在最前面插入一个新的维度,并命名为图片数量维度,长度为 1,此时张量的 shape 变为[1,1,28,28],实现如下。 In [74]: # axis=0 表示在 channel 前插入一个新维度,定义为 batch 维度 x = torch.unsqueeze(x, 0) Out[74]: # torch.Size([1, 1, 28, 28]) tensor([[[[70 码力 | 439 页 | 29.91 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesconvolution. In the first step, the input is convolved with m (dk, dk, 1) shaped kernels. The i-th channel of the input is convolved with the i-th kernel. It involves h x w x m x dk x dk operations and produces0 码力 | 53 页 | 3.92 MB | 1 年前3
PyTorch Release Notes19.0 ‣ Performance improvements for elementwise operations ‣ Performance improvements for per-channel quantization ‣ Relaxation of cudnn batchnorm input shape requirements ‣ Ubuntu 18.04 with February version of Jupyter Notebook 6.0.3 ‣ Ubuntu 18.04 with January 2020 updates ‣ Initial support for channel-last layout for convolutions ‣ Support for loop unrolling and vectorized loads and stores in TensorIterator0 码力 | 365 页 | 2.94 MB | 1 年前3
共 11 条
- 1
- 2













