积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)机器学习(18)

语言

全部英语(16)中文(简体)(2)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    mapping a floating point value to a fixed-point value where the latter requires a lesser number of bits. 3. This process can also be applied to signed b-bit fixed-point integers, where the output values How different are the two outputs? Solution: We will start with the random number generator with a fixed seed to get consistent results across multiple runs. Next, we will create an input tensor of shape cheaper at lower precisions like b=8 and are well supported by the hardware technologies like the fixed-point SIMD instructions which allows data parallelism, the SSE instruction set in x86 architecture
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    even have multiple parameters. For example, horizontal flip is a boolean choice, rotation requires a fixed angle or a range of rotation, and random augment requires multiple parameters. Figure 7-1: The plethora likelihood of finding the optimal increases with the number of trials. In contrast, the Grid Search has a fixed number of maximum trials. If there are real valued hyperparameters and total trials, grid search Based Training4 (PBT) incorporate these biological mechanisms to evolve better models. It spawns a fixed number of trials (referred as population) and trains them to convergence. Each trial is trained for
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    situation is to export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ usr/local/cuda-11/lib64 . This will be fixed in an upcoming release. ‣ GNMTv2 performance regression of up to 50% for inference use cases and vulnerability that was discovered late in our QA process. See CVE-2021-33910 for details. This will be fixed in the next release. PyTorch RN-08516-001_v23.07 | 186 Chapter 29. PyTorch Release 21.06 The vulnerability that was discovered late in our QA process. See CVE-2021-31542 for details. This will be fixed in the next release. ‣ The PyTorch container includes a version of Pillow with known vulnerabilities
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    high-dimensional concepts such as text, image, audio, video, etc. to a low-dimensional representation such as a fixed length vector of floating point numbers, thus performing dimensionality reduction1. b) The low-dimensional embed all the actors on IMDb, you might consider a pre-training task of predicting the actor, given a fixed number of the actor’s other cast members in each movie. As a result of this step, actors working together value. New words (the words which are not in the vocabulary) are also assigned a value 0 (or other fixed value). We truncate or pad sequences to ensure equal length sequences. Longer sequences are truncated
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    keeping the other fixed. In a sense, it is similar to a vertical or a horizontal shift. However, unlike the shifts where the moving coordinates are displaced perpendicular to the fixed axis, shear allows samples. Go ahead and resize them to 264x264 size. This is a required step because our model expects fixed-sized images. import tensorflow as tf # Target image size IMG_SIZE = 264 def dsitem_to_tuple(item): distribution. It is worth mentioning that the average mixing technique is a special case of mix-up with a fixed . The equations shown below mix two samples ( , ) and ( , ) to create a mixed sample ( , ): The
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    0 to ensure that the entire dataset is used towards the end. The pacing function starts with a fixed value . It is gradually ramped up linearly or exponentially to reach a value of 1.0 in the final function that starts with a fixed fraction of the data sorted by the scores, and at some iteration starts training with all the data. The solid and dashed lines show fixed and varied exponential pacing
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 56. 深度学习:GAN

    The End ? Never end ▪ Q1. Where will D converge, given fixed G ▪ Q2. Where will G converge, after optimal D Intuition Q1. Where will D go (fixed G) KL Divergence V.S. JS Divergence Q2. Where will G
    0 码力 | 42 页 | 5.36 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    illustration of the quantization process: mapping of continuous high-precision values to discrete fixed-point integer values. Another example is Pruning (see Figure 1-9), where weights that are not important is assigned a learned embedding vector that encodes a semantic representation of that token in a fixed-dimensional floating point vector. These embedding tables are very useful, because they help us convert
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    Feng Li (SDU) GDA, NB and EM September 27, 2023 60 / 122 Spam Email Classifier Given an email with fixed length, is it a spam? Training a (binary) classifier according to a data set {(x(i), y(i))}i=1,··· (SDU) GDA, NB and EM September 27, 2023 61 / 122 Spam Email Classifier (Contd.) Given an email with fixed length, is it a spam? Training a (binary) classifier according to a data set {(x(i), y(i))}i=1,···
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    weights to prune in each round. Pruning Schedules The algorithm described in figure 5-2 uses a fixed pruning rate $$p$$. However, we could use variable pruning rates across the pruning rounds. The motivation that we reach a final sparsity of 80% in the last round. The pruning rates for each round can be fixed initially or we can use an algorithm such as polynomial decay which computes the rates for each step
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterCompressionTechniquesAutomationPyTorchReleaseNotesArchitecturesAdvancedTechnicalReview深度学习入门实战56GANIntroductionLectureGaussianDiscriminantAnalysisNaiveBayes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩