积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)机器学习(9)

语言

全部英语(8)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Support Vector Machine

    demonstrated in Fig. 4. The basic idea of kernel method is to make linear model work in nonlinear settings by introducing kernel functions. In particular, by mapping the data into a higher-dimensional feature (59) To improve the precision of the numerical computations, we can calculate b∗ by taking into account all data samples with 0 < α∗ i < C b∗ = � i:0<α∗ i
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    ???? On Princeton CS server (ssh cycles.cs.princeton.edu) • Non-CS students can request a class account. • Miniconda is highly recommended, because: • It lets you manage your own Python installation • functions. • It allows building networks whose structure is dependent on computation itself. • NLP: account for variable length sentences. Instead of padding the sentence to a fixed length, we create graphs
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    attention matrix contains scores for each pair of elements from the two sequences. It takes into account, for instance, the relationship of the first element in the first sequence and the last element in in the sequence. Note that these words are far apart. Moreover, the word corporation takes into account both the past and future words. Table 4-3 shows a comparison of the quality metrics and the latencies
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    families support a maximum of 32K context window size. import torch from llama_index.core import Settings from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.huggingface import Set Qwen1.5 as the language model and set generation config (续下页) 42 Chapter 1. 文档 Qwen (接上页) Settings.llm = HuggingFaceLLM( model_name="Qwen/Qwen1.5-7B-Chat", tokenizer_name="Qwen/Qwen1.5-7B-Chat", device_map="auto", ) # Set embedding model Settings.embed_model = HuggingFaceEmbedding( model_name = "BAAI/bge-base-en-v1.5" ) # Set the size of the text chunk for retrieval Settings.transformations = [SentenceSp
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    improvement on many image classification tasks with different model architectures and data augmentation settings when using SAM. For instance, on the ImageNet task and the ResNet-152 model architecture trained techniques. Similarly, we might find that techniques like distillation might not be as helpful in certain settings. Subclass distillation in the next subsection can help us in some of these cases. Let’s find out
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    like the figure below. Note that the figures may be slightly different under different parameter settings. 10 20 30 40 50 60 70 Exam 1 score 40 50 60 70 80 90 100 Exam 2 score Admitted Not admitted
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    ) cannot reflect the nonlinear pattern in the data Kernels: Make linear model work in nonlinear settings By mapping data to higher dimensions where it exhibits linear patterns Apply the linear model in
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    cheaper operations like addition and subtraction, these gains need to be evaluated in practical settings because they require support from the underlying hardware. Moreover, multiplications and divisions
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    runtime resources of the container by including additional flags and settings that are used with the command. These flags and settings are described in Running A Container. ‣ The GPUs are explicitly defined
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
LectureNotesonSupportVectorMachinePyTorchTutorialEfficientDeepLearningBookEDLChapterArchitecturesAI模型千问qwen中文文档AdvancedTechniquesTechnicalReviewExperimentLogisticRegressionandNewtonMethodCompressionRelease
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩