积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(10)中文(简体)(3)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    to(device) # Directly use generate() and tokenizer.decode() to get the output. # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 to(device) # Directly use generate() and tokenizer.decode() to get the output. # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 指示 安装 SkyPilot。以下为您提供了一个使用 pip 进行安装的简单示例: # You can use any of the following clouds that you have access to: # aws, gcp, azure, oci, lamabda, runpod, fluidstack, paperspace, # cudo, ibm, scp, vsphere, kubernetes
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    maximizes the following objective: where is a weight factor defined as, such that and variables control the reward penalty for latency violation. In addition to the multiobjective optimization, Mnasnet experts. Imagine that we are developing an application to identify a flower from its picture. We have access to a flowers dataset (oxford_flowers102). As an application developer, with no experience with ML
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    September 6, 2023 14 / 57 Source of Training Data Provided random examples outside of the learner’s control. Negative examples available or only positive? Good training examples selected by a “benevolent” watching a given video on YouTube Predict the location in 3D space of a robot arm end effector, given control signals (torques) sent to its various motors Predict the amount of prostate specific antigen (PSA)
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 keras tutorial

    input, hidden layer, output layers, convolution layer, pooling layer, etc., Keras model and layer access Keras modules for activation function, loss function, regularization function, etc., Using Keras dtype=float32) >>> print(k.eval(result)) [[10. 50.] [20. 60.] [30. 70.] [40. 80.]] If you want to access from numpy: >>> data = np.array([[10,20,30,40],[50,60,70,80]]) >>> print(np.transpose(data)) modules: from keras import backend as K from keras.layers import Layer Here,  backend is used to access the dot function.  Layer is the base class and we will be sub-classing it to create our layer
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    used to scan people entering a building. I have yet to come across inverted people trying to gain access! Popular deep learning frameworks provide quick ways to integrate these transformations during the it. The code for this project is available as a Jupyter notebook here. Tensorflow provides easy access to this dataset through the tensorflow-datasets package. Let’s start by loading the training and
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    for the i-th class is given by: After, label smoothing it is defined as follows: can be used to control the noise. If it is too small, it might not have any effect. If it is too high, the distribution
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    directory because there is a space limit for your home directory. Choose another directory that you can access and that does not have a space limit, such as /rwproject/kdd-db/your_username . Since /rwproject/kdd-db/
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    https://www.tutorialspoint.com/pytorch/index.htm • https://github.com/hunkim/PyTorchZeroToAll • Free GPU access for short time: • Google Colab provides free Tesla K80 GPU of about 12GB. You can run the session
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    they allow massively parallelizing the Multiply-Add-Accumulate operation while minimizing memory access). TPUs have been used for speeding up training as well as inference, apart from being used in production
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    of Jupyter notebooks. You can run the notebooks in Google’s Colab environment which provides free access to CPU, GPU, and TPU resources. You can also run this locally on your machine using the Jupyter framework
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
AI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterAutomationLectureOverviewkerastutorialTechniquesAdvancedTechnicalReviewrwcpu8InstructionInstallminicondapytorchPyTorchTutorialIntroductionCompression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩