积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(68)机器学习(68)

语言

全部中文(简体)(62)英语(6)

格式

全部PDF文档 PDF(68)
 
本次搜索耗时 0.062 秒,为您找到相关结果约 68 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-09深度学习-目标检测

    2023年04月 深度学习-目标检测 黄海广 副教授 2 01 目标检测概述 02 目标检测算法 03 YOLO算法 04 Faster RCNN算法 本章目录 3 01 目标检测概述 1.目标检测概述 02 目标检测算法 03 YOLO算法 04 Faster RCNN算法 4 1.目标检测概述 分类(Classification) 类别的信息,用事先确定 好的类别(string)或实例ID 来描述图片。这一任务是 最简单、最基础的图像理 解任务,也是深度学习模 型最先取得突破和实现大 规模应用的任务。 检测(Detection) 分类任务关心整体,给出的 是整张图片的内容描述,而 检测则关注特定的物体目标 ,要求同时获得这一目标的 类别信息和位置信息。 分割(Segmentation) 分割包括语义分割(semantic segmentation)和实例分割( 分离开具有不同语义的图像部 分,而后者是检测任务的拓展 ,要求描述出目标的轮廓(相 比检测框更为精细)。 5 目标检测和识别 • 怎样检测和识别图 像中物体,如汽车、 牛等? 1.目标检测概述 6 目标识别的应用 1.目标检测概述 7 难点之一: 如何鲁棒识别? 1.目标检测概述 8 类内差异(intra-class variability) 1.目标检测概述 9 类间相似性(inter-class
    0 码力 | 43 页 | 4.12 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》4-商品检测篇:使用RetinaNet瞄准你的货架商品

    商品检测篇:使用 RetinaNet 瞄准你的货架商品 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 基础:目标检测问题定义与说明 • 基础:R-CNN系列二阶段模型综述 • 基础:YOLO系列一阶段模型概述 • 基础:RetinaNet 与 Facol Loss 带来了什么 • 应用:检测数据准备与标注 • 应用:划分检测训练集与测试集 • 应用:生成CSV 训练 RetinaNet • 应用:使用 RetinaNet 检测货架商品 • 扩展:目标检测常用数据集综述 • 扩展:目标检测更多应用场景介绍 目录 基础:目标检测问题定义与说明 目标检测问题 目标检测评估:Ground Truth 目标检测评估: Intersection over Union (IoU) 目标检测评估:Intersection over Union (IoU) Truth ??? = ???????????? ????? = Bounding Box Ground Truth 目标检测评估:准确率与召回率(以GT为中心) 目标检测评估:mean Average Precision(mAP) 基础:深度学习在目标检测的应用 目标检测近20年发展 Ref: Zou, Z., Shi, Z., Guo, Y. and Ye, J., 2019. Object
    0 码力 | 67 页 | 21.59 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    降维 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.7 点积(Dot Product) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 i 2.3.8 矩阵‐向量积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 6.2.3 图像中目标的边缘检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.2.4 学习卷积核 . . . . . . . . 热狗识别 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 13.3 目标检测和边界框 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 13.3.1 边界框
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    阿里云深度学习实践 程孟力 花名: 杨熙 阿里巴巴-计算平台-PAI 个性化推荐 视频理解 智能对话系统 图像检索 更多场景  OCR识别  人脸核身  智能风控  自动驾驶  语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 训练推理:  高qps, 低rt  支持超大模型  性价比 流程长、环节多:  推荐场景: 召回 + 粗排 + 精排 + 多样性/冷启动  实人认证: 卡证识别 + 人脸检测 + 活体检测 + 人脸 识别 … 模型构建: 问题: ✗ 方案复杂周期长/见效慢 ✗ 细节多难免踩坑 解决方案: 标准化  标准化模型库  标准化解决方案 1.方案复杂 Serving CV / NLP解决方案: EAS Web App Mobile App On-prem System 3 1 2 证件扫描 活体检测 人脸比对 • 卡证OCR • 人脸检测 • 活体检测 •人脸比对 Mobile SDK API + customer 示例: e-Know Your Customer eKYC eKYC Server eKYC
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 华为云深度学习在文本分类中的实践-李明磊

    华为云深度学习在文本分类中的实践 华为 Cloud&AI 李明磊 3 2 3 1 4 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 4 文本分类介绍 内容:  买没几天就降价一点都不开心,闪存跑分就五百多点点 ---  外观漂亮音质不错,现在电子产品基本上都是华为的了 ---  汽车不错,省油,性价比高 ---  这个政策好啊,利国利民 --- 85 0.9 0.95 人工标注 系统标注 效果:F1 未标注集合 ???????????? ???????????? 种子语料 机器学习模型 人工标注 15 华为云主动学习平台 16 华为云主动学习平台 17 1 2 4 3 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 18 情感分析 0.00% 20.00% 40.00% 60.00% 100.00% Accuracy Precision Recall F1 score 和友商效果对比-社交领域 华为1 华为2 友商1 友商2 友商3 友商4  内容:  买没几天就降价一点都不开心,闪存跑分就五百多点点 ---  外观漂亮音质不错,现在电子产品基本上都是华为的了 ---  汽车不错,省油,性价比高 ---  这个政策好啊,利国利民 --- 19 细粒度情感分析
    0 码力 | 23 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    练、 云部署、针对深度学习特定领域有不同的丰富的扩展库。 1.1.1 Pytorch 历史 Pytorch 在 2016 年由 facebook 发布的开源机器学习(深度 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 机器学习框架,第一个是 torch 框架,第二个是 Chainer,实 现了 Eager 模式与自动微分,Pytoch 集成了这两个框架的优 点, 把 Python torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 帮助开发者快速搭建原型演示。此外在移动端支持、模型部署 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java 等。通过它们就可 以实现大多数的模型结构搭建与生成。 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、 pytorch 自带的模型库、模型训练时候可视化支持组件、检查 点与性能相关的组件功能。重要的类有数据集类(Dataset), 数据加载类 (DataLoader)、自定义编程的可视化支持组件 tensorboard 相关类。 3)torch 开头的一些包与功能,主要包括支持模型导出功能
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 李东亮:云端图像技术的深度学习模型与应用

    家人安全—家居 出行安全—车辆 …… 电脑安全 手机安全 企业安全 …… 新时代的奇虎360 SACC2017 万物互联的新时代 交通 智能家居 机器人 AR/VR/MR 智能手机 穿戴设备 SACC2017 万物互联的核心技术 视觉感知 语音感知 语义理解 人工智能 大数据分析 物 环境 SACC2017 图像 视频 检测 识别 分割 跟踪 物 环境 Object Segmentation Object Classification Person, Horse, Barrier, Table, etc Object Detection 检测 识别 分割 跟踪 核 心 SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained 视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block SACC2017
    0 码力 | 26 页 | 3.69 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    构建环境地图(稀疏或者稠密的三维点云) 稀疏SLAM 稠密SLAM SLAM系统常用的框架 输入 • 传感器数据 前台线程 • 根据传感器数据进行跟踪求解, 实时恢复每个时刻的位姿 后台线程 • 进行局部或全局优化,减少误差累积 • 场景回路检测 输出 • 设备实时位姿 • 三维点云 RGB图 深度图 IMU测量值 优化以减少误差累积 回路检测 SLAM应用介绍 • 扫地机器人 • 优势 • 硬件成本低廉 • 小范围内定位精度较高 • 无需预先布置场景 基本原理:多视图几何 投影函数 主要模块 • 特征跟踪 • 获得一堆特征点轨迹 • 相机姿态恢复与场景三维结构恢复 • 求解相机参数和三维点云 • 如何处理循环回路序列和多视频序列? • 如何高效高精度地处理大尺度场景? • 如何处理动态场景? • 如何处理快速运动和强旋转? 复杂环境下的主要挑战 循环回路序列和多视频序列 • 如何将不同子序列上的相同特征点高效地匹配上? • 如何高效地进行全局优化,消除重建漂移问题? VisualSFM 结果 ENFT:高效的非连续帧特征跟踪 基于两道匹配的连续帧跟踪 • 抽取SIFT特征 • 第一道匹配:比较描述量 Global distinctive 平面运动分割 • 估计若干个平面运动 • 使用第一道匹配得到的内点匹配对(inlier matches)
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    年月中旬,黄鳝事件引爆网络, 让色情直播再度被推上舆论浪尖。 微信朋友圈日上传图片10亿张,视频播放20亿次 4000亿QQ空间存量图片,每天空间相册新增6亿 张上传图片 SACC2017 内容审核 - 痛点和诉求 默默承受 自建识别模型 加大审核人力 一旦出现严重违规平 台面临停业整顿风险 昂贵的专业机器、AI专家, 样本不足导致识别模型漏 过模型调优难度大 人力审核疲劳容易发 生漏过,人力招聘、 减少人工 漏审 技术诉求:自动识别图片或视频中出现的文 字、二维码、logo等内容以及违规人像、淫 秽、血腥、暴力、极端主义、恐怖主义图像 等,方便平台进行违规处理和风险管控。 业务痛点:面对越来越爆发的安全风险,解决办法门 槛高, 成本高;迫切需要技术解决方案 SACC2017 图像内容审核技术 OCR技术 图像分割以及超分辨率技术 优图图像技术还包括:图像分类、图像增 图像暴恐内容识别 l 识别应用:腾讯云,微云,QQ群 Ø 对于输入的图片,系统将会通过对其内容的识别 分析给出其属于武装份子、管制刀具、枪支弹药、 人群聚集、火灾、血腥、极端主义或恐怖主义标 识的概率,通过其概率最大的类型,判断其图片 性质属于属于暴恐还是正常。 Ø 高准确率: 在内部业务上测试,准确率97%,覆 盖80%以上的案例 Ø 腾讯云,承担每天数亿的图像审核, 已经 累计支持上百家客户。
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    网络和深度学习可认为是相同的。 现在简单来比较一下深度学习算法与其它算法的特点。如图 1.3 所示。基于规则的系 统一般会编写显式的检测逻辑,这些逻辑通常是针对特定的任务设计的,并不适合其他任 务。传统的机器学习算法一般会人为设计具有一定通用性的特征检测方法,如 SIFT、HOG 特征,这些特征能够适合某一类的任务,具有一定的通用性,但是如何设计特征,以及特 征方法的优劣性非常的关键,同时也 部分工作可以让机器自动完成学习,不需要人类干预。但是浅层的神经网络的特征提取能 力较为有限,而深层的神经网络擅长提取高层、抽象的特征,因此具有更好的性能表现。 针对特定任务 的检测逻辑 输出逻辑 人为设计的 特征检测方法 输出逻辑 特征提取网络 (浅层) 输出子网络 底层特征提取 网络 中层特征提取 网络 高层特征提取 网络 输出子网络 基于规则的系统 传统机器学习 浅层神经网络 浅层神经网络 深度学习 图 1.3 深度学习与其它算法比较 1.2 神经网络发展简史 本书将神经网络的发展历程大致分为浅层神经网络阶段和深度学习两个阶段,以 2006 年为大致分割点。2006 年以前,深度学习以神经网络和连接主义的名义发展,经历了两次 预览版202112 第 1 章 人工智能绪论 4 兴盛和两次寒冬;2006 年,Geoffrey Hinton
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 68 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往
页
相关搜索词
机器学习课程温州大学09深度目标检测TensorFlow快速入门实战商品使用RetinaNet瞄准货架动手v2阿里云上建模实践程孟力华为文本分类李明磊PyTorchOpenVINO开发系列教程第一一篇第一篇李东亮云端图像技术模型应用复杂环境视觉同时定位地图构建国富审核深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩