积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)机器学习(15)

语言

全部中文(简体)(9)英语(6)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.073 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    PyTorch + OpenVINO 开发实战系列教程 第一篇 系列文章 OpenVINO TM 工具套件 目录 目录 概述 ��������������������������������������������������������������������������������������������������������������������������������� 现对整个计算图参数的评估优化。但是到底什么是张量?可以 看下面这张图: 图 1-3(张量表示) PyTorch + OpenVINO 开发实战系列教程 第一篇 5 上图 1-3 中标量、向量、数组、3D、4D、5D 数据矩阵在深 度学习框架中都被称为张量。可见在深度学习框架中所有的数 据都是张量形式存在,张量是深度学习数据组织与存在一种数 据类型。 ● 算子 / 操作数 深度学习主要是
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    组,其中 None 表示可能为任何正整数)。在 input_shape 中不包含数据的 batch 大小。 • 某些 2D 层,例如 Dense,支持通过参数 input_dim 指定输入尺寸,某些 3D 时序层支持 input_dim 和 input_length 参数。 • 如果你需要为你的输入指定一个固定的 batch 大小(这对 stateful RNNs 很有用),你可以 传递一个 batch_size model.output_shape == (None, 3, 32) 参数 • n: 整数,重复次数。 输入尺寸 2D 张量,尺寸为 (num_samples, features)。 输出尺寸 3D 张量,尺寸为 (num_samples, n, features)。 5.2.9 Lambda [source] keras.layers.Lambda(function, output_shape=None • bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。 关于 KERAS 网络层 67 输入尺寸 3D 张量 ,尺寸为 (batch_size, steps, input_dim)。 输出尺寸 3D 张量,尺寸为 (batch_size, new_steps, filters)。由于填充或窗口按步长滑动,steps 值可能已更改。 5.3.2
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    本书基于清华大学出版社出版的《TensorFlow 深度学习—深入理解人工智能算法》一书 进行二次撰写,代码部分完全基于 PyTorch 进行实现。考虑到本人能力有限、行文仓促,可 以预见地,本书会存在部分语句表达不准确、部分素材尚未创作完成、部分参考引用未能及 时补充、甚至一些错误出现,因此本书以开源、免费地方式发布,希望一方面能够帮助初学 者快速上手深度学习算法,另一方面也能汇聚众多行业专家们的力量,修正测试版中的谬误 之处,让本书变得更为完善。 1.15 目标检测效果图 图 1.16 语义分割效果图 视频理解(Video Understanding) 随着深度学习在 2D 图片的相关任务上取得较好的效 果,具有时间维度信息的 3D 视频理解任务受到越来越多的关注。常见的视频理解任务有 视频分类、行为检测、视频主体抽取等。常用的模型有 C3D、TSN、DOVF、TS_LSTM 等。 图片生成(Image Generation) × 4,现有 2 个通道的源张量 src, 其 shape 为:[2,4,4],需要写入索引为[1,3]的通道上。 源张量:src 目标张量:x 输出 索引坐标:index 图 5.4 3D 张量更新示意图 下面将新的特征图写入目标张量中,实现如下: In [62]: # 构造写入位置,即 2 个位置 idx = torch.tensor([1, 3]) src = torch
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    – The Future of VR》 SLAM应用介绍 • 增强现实:Google Tango Google的Tango项目演示视频 Tango为终端开发者提供了从硬件到软件的整套AR开发套件 SLAM应用介绍 • 混合现实:微软HoloLens HoloLens融合了场景位置感知和头盔显示技术,并提供了完整的软硬件解决方案。 Hololens部分传感器 左右双目+前视RGB摄像头+深度传感器
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    图像/视频分类 阿里云计算集群 实时计算集群 业务 Storm/Flink Yarn/K8s …… …… …… 调度 Docker 存储 PS/WeiPS 基础/IDE(WeiIDE) 开发套件 控制台 控制中心 算法/模型(WeiFlow) 模型训练/评估 样本库 模型库 模型服务/推荐引擎 数据/特征(WeiData) 数据/特征生成 数据/特征存储 数据/特征服务
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    感谢读者对本书的关注,因为读者的注意力是一种稀缺的资源:此刻读者正在阅读本书(而忽略了其他的书), 因此读者的注意力是用机会成本(与金钱类似)来支付的。为了确保读者现在投入的注意力是值得的,作者 们尽全力(全部的注意力)创作一本好书。 自经济学研究稀缺资源分配以来,人们正处在“注意力经济”时代,即人类的注意力被视为可以交换的、有 限的、有价值的且稀缺的商品。许多商业模式也被开发出来去利用这一点:在音乐或视频流媒体服务上,人 operation),其中任何超出有效长度的位置都被掩蔽并置为0。 #@save def masked_softmax(X, valid_lens): """通过在最后一个轴上掩蔽元素来执行softmax操作""" # X:3D张量,valid_lens:1D或2D张量 if valid_lens is None: return nn.functional.softmax(X, dim=-1) else: shape torch.linspace(-1.0, 1.0, 101)) z = x**2 - y**2 ax = d2l.plt.figure().add_subplot(111, projection='3d') ax.plot_wireframe(x, y, z, **{'rstride': 10, 'cstride': 10}) ax.plot([0], [0], [0], 'rx') ticks
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 如何利用深度学习提高高精地图生产的自动化率-邹亮

    ����I��� �P��������I�M����U�� ��M�C�������� ��(������� ���)����� ����������� ������� DeepMapTM 3D Map for Localization 9 ● ������������ ● ����������� ������������������������ ����������������������� Detection) ��� 3D������ �����������������������(��������������������) � � ���D����������A� D�� ��������O� ���������� 3D������ ���(��������D���� ��� ��� ���(��������������)2��1��������� 3D������ ���
    0 码力 | 34 页 | 56.04 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    Geometrically, when n = 1, h✓(x) is actually a line in a 2D plane, while h✓(x) represents a plane in a 3D space when n = 2. Generally, when n � 3, h✓(x) defines a so-called “hyperplane” in a higher dimensional y(i)⌘2 1 Figure 1: 3D linear regression. Specifically, we aim at minimizing J(✓) over ✓. We give an illustration in Fig. 1 to explain linear regression in 3D space (i.e., n = 2). In the 3D space, the hypothesis
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    mplot3d 是一个基础 3D绘图(散点图、平面图、折线图等)工具集,也是 matplotlib 库的一部分。同时,它也支持轻量级的独立安装模式。 数据分析(2D) seaborn.lmplot 方法专门用于线性关系的可视化,适用于回归模型。 数据分析(2D) seaborn.lmplot 方法专门用于线性关系的可视化,适用于回归模型。 数据分析(3D) Axes3D.scatter3D scatter3D 方法专门用于绘制3维的散点图。 数据归一化(3D) 数据处理:NumPy NumPy 是一个 BSD 开源协议许可的,面向 Python 用户的基础科学计算库,在多 维数组上实现了线性代数、傅立叶变换和其他丰富的函数运算。 X y 创建线性回归模型(数据流图) 创建会话(运行环境) 使用 TensorBoard 可视化模型数据流图 TensorBoard 可视化工具
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    visualize the relationship between the parameters θ ∈ R2 and J(θ). In this problem, we’ll plot J(θ) as a 3D surface plot. (When applying learning algorithms, we don’t usually try to plot J(θ) since usually θ use the orbit tool to view this plot from different viewpoints. What is the relationship between this 3D surface and the value of θ0 and θ1 that your implementation of gradient descent had found? Visualize
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchOpenVINO开发实战系列教程第一一篇第一篇Keras基于Python深度学习深度学习复杂环境视觉同时定位地图构建微博在线机器实践黄波动手v2如何利用提高高精生产自动自动化邹亮LectureNotesonLinearRegressionTensorFlow快速入门房价预测Experiment
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩