Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . 29 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) . . . . . . . 30 3.3.7 为什么训练误差比测试误差高很多? . . . . . . . . . . . . . . . . . . . . . . 31 3.3.8 如何获取中间层的输出? . . . . . . . . . . . . . . . 134 7.1 损失函数的使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2 可用损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.1 mean_squared_error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 13 预训练模型 Applications 158 13.1 可用的模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.2 图像分类模型的示例代码0 码力 | 257 页 | 1.19 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.5.1 高维线性回归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 4.5.2 从零开始实现 我们感谢Amazon Web Services,特别是Swami Sivasubramanian、Peter DeSantis、Adam Selipsky和Andrew Jassy对撰写本书的慷慨支持。如果没有可用的时间、资源、与同事的讨论和不断的鼓励,这本书就不会出版。 小结 • 深度学习已经彻底改变了模式识别,引入了一系列技术,包括计算机视觉、自然语言处理、自动语音识 别。 • 要成功地应用深度学 --name d2l python=3.9 -y 现在激活 d2l 环境: conda activate d2l 安装深度学习框架和d2l软件包 在安装深度学习框架之前,请先检查计算机上是否有可用的GPU。例如可以查看计算机是否装有NVIDIA GPU并已安装CUDA9。如果机器没有任何GPU,没有必要担心,因为CPU在前几章完全够用。但是,如果想 流畅地学习全部章节,请提早获取GPU并且安装深度学习框架的GPU版本。0 码力 | 797 页 | 29.45 MB | 1 年前3
超大规模深度学习在美团的应用-余建平model group内共享特征key的存储 • 超大规模模型 -> 高扇出的分布式PS • 长尾效应:单个分片的抖动(网络、CPU)对请求影响变大 单分片4个9的可用性 16分片整体可用性:99.99% ^ 16 = 99.84% 64分片整体可用性:99.99% ^ 64 = 99.36% 128分片整体可用性:99.99% ^ 128 = 98.72% • Backup Backup Request Jeff Dean在解决BigTable高扇出时提出的方案 PS的长尾效应 Backup Request 副本1 副本2 PS Shard 1 副本1 副本2 PS Shard 2 副本1 副本2 PS Shard N Predictor req 1 req 2 req N PS Req … … reply 1 reply 2 reply N … 无效信息多 样本分布 • 在线、近线、离线全流程解决方案 召回模型通路 • 粗排模型 • 精排模型 排序模型解决方案 • 粗排阶段的特点 候选集大,通常在千到万级别 线上的响应时间要求高,通常在几到十几ms • 简单模型 计算耗时短:线性模型LR、树模型 模型表达能力不足,效果一般 • 复杂模型 DNN模型解决耗时是关键,利用预计算解决耗时问题 效果保障:0 码力 | 41 页 | 5.96 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波Checkpoint 节点异常修复 3 在线机器学习-实时样本生成 • 在线机器学习模型训练:Flink/Blink+WeiPS 样本生成和特征处理 1.配置化 2.多标签样本 3.支持高维HASH 训练预处理 1.标签选择 2.标签UDF 3.样本过滤 4.特征过滤 模型训练 1.支持回归和分类 2.支持LR、FM、 DeepFM等模型 3.支持SGD 、 FTRL 优化算法选择 • FTRL:调节学习率,突出低频特征,非batch优化 • Adagrad : 调节学习率,突出低频特征,实现简单 • SGD: 参数少,效率高,固定学习率 • ID特征处理 • Hash:BKDRhash/CityHash,ID高维度稀疏+实时 3 在线机器学习-实时模型训练 serving serving server server server worker Model 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参数服务的高可用,支持基于模型的异构集群迁移,支持集 群扩缩容 • 性能优化 • 通信优化:数据请求(PULL&PUSH)聚合,同模型多矩阵并发,锁粒度优化,性能提升5-10倍 • 缓存优化:使用堆外内存与0 码力 | 36 页 | 16.69 MB | 1 年前3
如何利用深度学习提高高精地图生产的自动化率-邹亮0 码力 | 34 页 | 56.04 MB | 1 年前3
AI大模型千问 qwen 中文文档是一个易于使用的工具包,专门用于 4 比特量化模型。相较于 FP16,AutoAWQ 能够将模型的运行速度提升 3 倍,并将内存需求降低至原来的 1/3。AutoAWQ 实现了激活 感知权重量化(AWQ)算法,可用于 LLM 的量化处理。在本文档中,我们将向您展示如何在 Transformers 框 架下使用量化模型,以及如何对您自己的模型进行量化。 1.7.1 如何在 Transformers 中使用 AWQ SkyPilot 是什么 SkyPilot 是一个可以在任何云上运行 LLM、AI 应用以及批量任务的框架,旨在实现最大程度的成本节省、最 高的 GPU 可用性以及受管理的执行过程。其特性包括: • 通过跨区域和跨云充分利用多个资源池,以获得最佳的 GPU 可用性。 • 把费用降到最低——SkyPilot 在各区域和云平台中为您挑选最便宜的资源。无需任何托管解决方案的 额外加价。 • 将服务扩展到多个副本上,所有副本通过单一 docker exec -it sky /bin/bash 1.11.3 使用 SkyPilot 运行 Qwen1.5-72B-Chat 1. 您可以使用 serve-72b.yaml 中的可用的 GPU 来在单个实例上部署 Qwen1.5-72B-Chat 的基于 vLLM 的适 配 OpenAI API 的服务 sky launch -c qwen serve-72b.yaml 20 码力 | 56 页 | 835.78 KB | 1 年前3
机器学习课程-温州大学-01深度学习-引言不同行业的人以为我做的事情 父母以为我做的事情 程序员以为我做的事情 我自己以为我做的事情 实际上我做的事情 10 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 11 深度学习-CV(计算机视觉方向) 图像获取 ,而且错误率高。图像识别技术(OCR)的出 现大大提升了翻译的效率和准确度,用户通 过简单的拍照、截图或划线就能得到准确的 翻译结果。 体育赛事 计算机视觉还有助于比赛和策略分 析、球员表现和评级,以及跟踪体育 节目中品牌赞助的可见性。 农业 半自动联合收割机可以利用人工智能 和计算机视觉来分析粮食品质,并找 出农业机械穿过作物的最佳路径。另 外也可用来识别杂草和作物,有效减0 码力 | 80 页 | 5.38 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112由华人陈天奇和李沐等人开发,是亚马逊公司的官方深度学习框架。采用了 命令式编程和符号式编程混合方式,灵活性高,运行速度快,文档和案例也较为丰 富。 ❑ Keras 是一个基于 Theano 和 TensorFlow 等框架提供的底层运算而实现的高层框架, 提供了大量快速训练、测试网络的高层接口。对于常见应用来说,使用 Keras 开发效 率非常高。但是由于没有底层实现,需要对底层框架进行抽象,运行效率不高,灵活 性一般。 预览版202112 1.5 深度学习框架 15 程,也称为动态图模式。PyTorch 是采用动态图模式的深度学习框架,开发效率高,调试 方便,所见即所得。一般认为,动态图模式开发效率高,但是运行效率可能不如静态图模 式,更适合算法设计和开发;静态图模式运行效率高,更适合算法部署。然而并不全是如 此,在很多任务上,PyTorch 的速度都优于 TensorFlow,而且 PyTorch 在工业部署上也有成 ipython 交互式终端,输入“import torch”命令,如果没有错误产生,继续输入 “torch.cuda.is_gpu_available()”测试 GPU 是否可用,返回“True”或者“False”,代表了 GPU 设备是否可用,如图 1.32 所示。如果为 True,则 PyTorch GPU 版本安装成功;如果 为 False,则安装失败,需要再次检查 CUDA、环境变量等步骤,或者复制错误,从搜索引0 码力 | 439 页 | 29.91 MB | 1 年前3
机器学习课程-温州大学-05机器学习-机器学习实践,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 21 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 22 欠拟合的处理 1.添加新特征 当特 也就是离其期望值的距离。方差越大,数 据的分布越分散,如右图右列所示。 偏差Bias: 描述的是预测值(估计值)的期望与真实 值之间的差距。偏差越大,越偏离真实数 据,如右图第二行所示。 低方差 高方差 高 偏 差 低 偏 差 29 偏差和方差 总体误差 方差 偏差 2 最 优 模 型 复 杂 度 模型复杂度 误 差 方差、偏差和模型复杂度 右图是模型复杂度与误差的关系,一 Good fit Overfitting 31 偏差和方差 1. 获得更多的训练实例——解决高方差 2. 尝试减少特征的数量——解决高方差 3. 尝试获得更多的特征——解决高偏差 4. 尝试增加多项式特征——解决高偏差 5. 尝试减少正则化程度λ——解决高偏差 6. 尝试增加正则化程度λ——解决高方差 x1 x2 32 参考文献 [1] Andrew Ng. Machine Learning[EB/OL]0 码力 | 33 页 | 2.14 MB | 1 年前3
机器学习课程-温州大学-05深度学习-深度学习实践,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 9 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 10 欠拟合的处理 1.添加新特征 当特 Good fit Overfitting 17 偏差和方差 1. 获得更多的训练实例——解决高方差 2. 尝试减少特征的数量——解决高方差 3. 尝试获得更多的特征——解决高偏差 4. 尝试增加多项式特征——解决高偏差 5. 尝试减少正则化程度λ——解决高偏差 6. 尝试增加正则化程度λ——解决高方差 x1 x2 18 参考文献 1. IAN GOODFELLOW等,《深度学习》,人民邮电出版社,20170 码力 | 19 页 | 1.09 MB | 1 年前3
共 44 条
- 1
- 2
- 3
- 4
- 5













