机器学习课程-温州大学-08机器学习-集成学习1 2022年12月 机器学习-集成学习 黄海广 副教授 2 本章目录 01 集成学习方法概述 02 AdaBoost和GBDT算法 03 XGBoost 04 LightGBM 3 1.集成学习方法概述 01 集成学习方法概述 02 AdaBoost和GBDT算法 03 XGBoost 04 LightGBM 4 Bagging 结果进行综合产生最终的预测结果: 集成学习 模型n …… 模型1 模型2 预测n …… 预测1 预测2 训练 数据 最终 预测 结果 测试 数据 5 Boosting 训练过程为阶梯状,基模型 按次序一一进行训练(实现 上可以做到并行),基模型 的训练集按照某种策略每次 都进行一定的转化。对所有 基模型预测的结果进行线性 综合产生最终的预测结果。 集成学习 模型n 最终 最终 预测 结果 模型2 预测n …… 预测1 预测2 转化 模型1 模型3 转化 转化 训练 数据 测试 数据 6 集成学习 模型n …… 模型1 模型2 预测n …… 预测1 预测2 训练 数据 第二 层数 据 Stacking 最终 预测 结果 Stacking 将训练好的所有基模型对训练基进行预测,第j个基模型对第i个训练样本的预测值将作为新的训0 码力 | 50 页 | 2.03 MB | 1 年前3
机器学习课程-温州大学-05机器学习-机器学习实践s聚类、 感知机和SVM、神经网络。另外,线性回归类的几个模型一般情况下也 是需要做数据归一化/标准化处理的。 不需要做数据归一化/标准化 决策树、基于决策树的Boosting和Bagging等集成学习模型对于特征取 值大小并不敏感,如随机森林、XGBoost、LightGBM等树模型,以及 朴素贝叶斯,以上这些模型一般不需要做数据归一化/标准化处理。 3.正则化、偏差和方差 19 过拟合和欠拟合 些模型选择的算法来帮忙(例如PCA)。 3.正则化 正则化(regularization)的技术,保留所有的特征,但是减少参数的大小(magnitude) ,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 21 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应0 码力 | 33 页 | 2.14 MB | 1 年前3
机器学习课程-温州大学-02机器学习-回归-means聚类、 感知机和SVM。另外,线性回归类的几个模型一般情况下也是需要做数 据归一化/标准化处理的。 不需要做数据归一化/标准化 决策树、基于决策树的Boosting和Bagging等集成学习模型对于特征取 值大小并不敏感,如随机森林、XGBoost、LightGBM等树模型,以及 朴素贝叶斯,以上这些模型一般不需要做数据归一化/标准化处理。 22 3. 正则化 01 线性回归 些模型选择的算法来帮忙(例如PCA)。 3.正则化 正则化(regularization)的技术,保留所有的特征,但是减少参数的大小(magnitude) ,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 25 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应0 码力 | 33 页 | 1.50 MB | 1 年前3
机器学习课程-温州大学-05深度学习-深度学习实践些模型选择的算法来帮忙(例如PCA)。 3.正则化 正则化(regularization)的技术,保留所有的特征,但是减少参数的大小(magnitude) ,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。 9 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应0 码力 | 19 页 | 1.09 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇发布的开源机器学习(深度 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 机器学习框架,第一个是 torch 框架,第二个是 Chainer,实 现了 Eager 模式与自动微分,Pytoch 集成了这两个框架的优 点, 把 Python 语言作为框架的首选编程语言,所以它的名字 是在 torch 的前面加上 Py 之后的 Pytorch。由于 Pytorch 吸 取了之前一些深度学习框架优点,开发难度大大降低、很容易 些基本的数据定义与类型转换、算子操作、通过它们帮助读者 进一步了解 Pytorch 开发基础知识,为后续章节学习打下良好 基础。在正式开始这些基础操作之前,我们首先需要有一个合 适的集成开发环境 (IDE),本书的源代码是基于 Python 实现, 演示的集成开发环境(IDE)是 PyCharm。 1.4.1 PyCharm 的安装与配置 首先是从 Pycharm 官方网站上下载 Pycharm,版本有专业 版0 码力 | 13 页 | 5.99 MB | 1 年前3
亚马逊AWSAI Services Overview/ 2017 Intent / Slot model London Heathrow Seattle 02/24/2017 Hotel Booking 与 AWS Mobile Hub 集成 Authenticate users Analyze user behavior Store and share media Synchronize data More …. Track and AWS DynamoDB is really appealing.” Amazon Rekognition 基于深度学习的图像识别服务 目标和场景检测 面部分析 人脸比对 人脸识别 集成了 S3, Lambda, Polly, Lex 对象和场景识别 为成千上万的对象、场景和概念生成标签,并配有可信度的数字 • 检索、过滤并对 图片库去粗取精 • 对用户生成的内 容进行智能检索0 码力 | 56 页 | 4.97 MB | 1 年前3
机器学习课程-温州大学-Scikit-learnnaive_bayes.GaussianNB neighbors.NearestNeighbors 监督学习算法-分类 17 2.Scikit-learn主要用法 监督学习算法-集成学习 sklearn.ensemble模块包含了一系列基于集成思想的分类、回归和离群值检测方法. from sklearn.ensemble import RandomForestClassifier clf = Random0 码力 | 31 页 | 1.18 MB | 1 年前3
华为云深度学习在文本分类中的实践-李明磊4 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 12 数据不均衡 13 数据不均衡 预处理方法 上采样 下采样 SMOTE 数据增广 集成方法 SMOTEbagging 改损失函数 Focal loss “An Insight into Classification with Imbalanced Data: Empirical0 码力 | 23 页 | 1.80 MB | 1 年前3
TensorFlow on Yarn:深度学习遇上大数据log上传到了HDFS� 查看历史日志� TensorFlow on Yarn技术细节揭秘 实现Yarn Application的标准流程:� TensorFlow on Yarn技术细节揭秘 集成TensorFlow到Yarn面临的特定问题:� • 如何自组织ClusterSpec信息� • 训练数据的划分� • 如何启动Tensorboard服务� • 如何降低迁移成本� • 已0 码力 | 32 页 | 4.06 MB | 1 年前3
阿里云上深度学习建模实践-程孟力customer 示例: e-Know Your Customer eKYC eKYC Server eKYC SDK/API 多语言、国际化 多种证件版式 准确率领先同类产品 集成方便 标准化: Standard Solutions 智能推荐解决方案: 推荐请求 PAI-Studio–建模平台 召 回 模 型 EasyRec GraphLearn Alink0 码力 | 40 页 | 8.51 MB | 1 年前3
共 13 条
- 1
- 2













