积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(4)机器学习(4)

语言

全部中文(简体)(3)英语(1)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.047 秒,为您找到相关结果约 4 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    数据过滤 样本拼接 定时轮询 Kafka Hdfs 样本输出 3 在线机器学习-实时样本生成 • 多流拼接 • 曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 • 延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待 • Kafka 堆积监控,实时报警 • 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 深度学习-深度学习模型训练 • 通信优化 • PS:BSP/SSP/ASP多种通信模式支持 • MPI&RingAllreduce:Horovod,使用 MPI替换grpc,同步通信模式;带宽优化,增加延时; • PS&MPI:DistributionStrategy API,统一分布式语义,解耦分布式架构与模型训练框架 • 使用FP16通信,使用FP32做计算,带宽压力降低一倍 • IO优化
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《深度学习在微博信息流排序的应用》-刘博

    CTR任务特点 Ø CTR预估常用算法 • LR • GBDT • FM • 大量离散特征、高维稀疏 • 特征关联性挖掘 CTR一般流程 业务目标与模型选择 Ø 模型优化目标 • 互动(转发/评论/赞) 点击(图片/视频/文章/链接等) 阅读时长 Ø 模型选择 • 线性模型LR+特征工程 • 多目标预估 • 排序基于pointwise的 learning to rank 互动模型
    0 码力 | 21 页 | 2.14 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    12.1.3 Sequential的混合式编程 要了解混合式编程的工作原理,最简单的方法是考虑具有多层的深层网络。按照惯例,Python解释器需要执 行所有层的代码来生成一条指令,然后将该指令转发到CPU或GPU。对于单个的(快速的)计算设备,这不会 导致任何重大问题。另一方面,如果我们使用先进的8‐GPU服务器,比如AWS P3dn.24xlarge实例,Python将很 难让所有的G 使用Jupyter Notebook工具,我们可以编辑、运行和为本书做贡献。 • 使用端口转发在远程服务器上运行Jupyter Notebook。 746 16. 附录:深度学习工具 练习 1. 在本地计算机上使用Jupyter Notebook编辑并运行本书中的代码。 2. 使用Jupyter Notebook通过端口转发来远程编辑和运行本书中的代码。 3. 对于两个方矩阵,测量A⊤B与AB在R1 init, 你可能需要执行source~/.bashrc,而不是关闭并重新打开当 前shell。 16.3.4 远程运行Jupyter笔记本 要远程运行Jupyter笔记本,你需要使用SSH端口转发。毕竟,云中的服务器没有显示器或键盘。为此,请从 你的台式机(或笔记本电脑)登录到你的服务器,如下所示: # 此命令必须在本地命令行中运行 ssh -i "/path/to/key.pem"
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    多输入多输出模型 以下是函数式 API 的一个很好的例子:具有多个输入和输出的模型。函数式 API 使处理大 量交织的数据流变得容易。 来考虑下面的模型。我们试图预测 Twitter 上的一条新闻标题有多少转发和点赞数。模型的 主要输入将是新闻标题本身,即一系列词语,但是为了增添趣味,我们的模型还添加了其他的 辅助输入来接收额外的数据,例如新闻标题的发布的时间等。该模型也将通过两个损失函数进 行监督
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
微博在线机器学习深度实践黄波QCon北京2018信息信息流排序应用刘博动手v2Keras基于Python
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩