积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部中文(简体)(24)英语(1)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.050 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    构建基于富媒体大数据的弹性深度学 习计算平台 SPEAKER / 土土@七牛 AtLab Mobile —> 富媒体时代 数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 … 描述:事件1-XXXX 事件2-XXXX 人物出现:id1, id2 场景二 … 用户行 为 用户数 据 推理结 果 推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    阿里云深度学习实践 程孟力 花名: 杨熙 阿里巴巴-计算平台-PAI 个性化推荐 视频理解 智能对话系统 图像检索 更多场景  OCR识别  人脸核身  智能风控  自动驾驶  语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 Parameter Server MPI TreeModel SQL MapReduce Blink  场景丰富: 图像/视频/推荐/搜索  大数据+大模型: Model Zoo  跨场景+跨模态  开箱即用: 封装复杂性  白盒化, 可扩展性强  积极对接开源系统+模型 FTRL SGD Adam Solutions Librarys 优势: Components SDK/API  多语言、国际化  多种证件版式  准确率领先同类产品  集成方便 标准化: Standard Solutions 智能推荐解决方案: 推荐请求 PAI-Studio–建模平台 召 回 模 型 EasyRec GraphLearn Alink 排 序 模 型 模型训练评估 PAI-EAS – 模型推理 model1 model2 … PAI-ABTest
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    评测结果。 1.4. llama.cpp 9 Qwen 1.4.5 在 LM Studio 使用 GGUF 如果你仍然觉得使用 llama.cpp 有困难,我建议你尝试一下 LM Studio 这个平台,它允许你搜索和运行本地的 大规模语言模型。Qwen1.5 已经正式成为 LM Studio 的一部分。祝你使用愉快! 1.5 Ollama Ollama 帮助您通过少量命令即可在本地运行 LLM。它适用于 LLM、AI 应用以及批量任务的框架,旨在实现最大程度的成本节省、最 高的 GPU 可用性以及受管理的执行过程。其特性包括: • 通过跨区域和跨云充分利用多个资源池,以获得最佳的 GPU 可用性。 • 把费用降到最低——SkyPilot 在各区域和云平台中为您挑选最便宜的资源。无需任何托管解决方案的 额外加价。 • 将服务扩展到多个副本上,所有副本通过单一 endpoint 对外提供服务 • Qwen 2 1 - 2 mins ago 1x GCP({'L4': 8}) READY us-east4- �→a 如下所示:该服务现由两个副本提供支持,一个位于 Azure 平台,另一个位于 GCP 平台。同时,已为服务 选择云服务商提供的最经济实惠的加速器类型。这样既最大限度地提升了服务的可用性,又尽可能降低了成 本。 3. 要访问模型,我们使用带有 curl -L (用于跟随重定向),将请求发送到
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    ine learning,ML)是一类强大的可 以从经验中学习的技术。通常采用观测数据或与环境交互的形式,机器学习算法会积累更多的经验,其性能 17 也会逐步提高。相反,对于刚刚所说的电子商务平台,如果它一直执行相同的业务逻辑,无论积累多少经验, 都不会自动提高,除非开发人员认识到问题并更新软件。本书将带读者开启机器学习之旅,并特别关注深度 学习(deep learning,DL)的基础 Kaggle Kaggle72是一个当今流行举办机器学习比赛的平台,每场比赛都以至少一个数据集为中心。许多比赛有赞助 方,他们为获胜的解决方案提供奖金。该平台帮助用户通过论坛和共享代码进行互动,促进协作和竞争。虽然 排行榜的追逐往往令人失去理智:有些研究人员短视地专注于预处理步骤,而不是考虑基础性问题。但一个 客观的平台有巨大的价值:该平台促进了竞争方法之间的直接定量比较,以及代码共享。这便于每个人都可以 -------+ 在PyTorch中,每个数组都有一个设备(device),我们通常将其称为环境(context)。默认情况下,所有 变量和相关的计算都分配给CPU。有时环境可能是GPU。当我们跨多个服务器部署作业时,事情会变得更加 棘手。通过智能地将数组分配给环境,我们可以最大限度地减少在设备之间传输数据的时间。例如,当在带 有GPU的服务器上训练神经网络时,我们通常希望模型的参数在GPU上。
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 房源质量打分中深度学习应用及算法优化-周玉驰

    门店平均房源 2.1万 门店 10-25 经纪人熟悉房源 70% 跨店成交占比 1.87亿 房屋 3000万 月活跃用户 • 需要强大的房源质量盘点工具 • 找到好房难度大,成本高 挑战 200万 贝壳全部房源 2019 KE.COM ALL COPYRIGHTS RESERVED 7 目标&价值 平台  提升去化率 经纪人  提升效率和业绩 客户  降低看房成本
    0 码力 | 48 页 | 3.75 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    scipy.stats 统计函数 69 Python模块-Matplotlib ⚫Matplotlib Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格 式和跨平台的交互式环境生成 出版质量级别的图形 。 通过 Matplotlib,开发者可以 仅需要几行代码,便可以生成 绘图,直方图,功率谱,条形 图,错误图,散点图等。 https://matplotlib
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    scipy.stats 统计函数 70 Python模块-Matplotlib ⚫Matplotlib Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格 式和跨平台的交互式环境生成 出版质量级别的图形 。 通过 Matplotlib,开发者可以 仅需要几行代码,便可以生成 绘图,直方图,功率谱,条形 图,错误图,散点图等。 https://matplotlib
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    及的次数位居第二。Keras 还被大型科学组织的研究人员采用,特别是 CERN 和 NASA。 2.3 Keras 可以轻松将模型转化为产品 与任何其他深度学习框架相比,你的 Keras 模型可以轻松部署在更广泛的平台上: • 在 iOS 上,通过 Apple’s CoreML(苹果为 Keras 提供官方支持)。这里有一个教程。 • 在安卓上,通过 TensorFlow Android runtime,例如:Not TensorFlow 后端 • 微软的 CNTK 后端 • Theano 后端 亚马逊也正在为 Keras 开发 MXNet 后端。 如此一来,你的 Keras 模型可以在 CPU 之外的不同硬件平台上训练: • NVIDIA GPU。 • Google TPU,通过 TensorFlow 后端和 Google Cloud。 • OpenGL 支持的 GPU, 比如 AMD, 通过 PlaidML 权重的约束。 • shared_axes: 激活函数共享可学习参数的轴。例如,如果输入特征图来自输出形状为 (batch, height, width, channels) 的 2D 卷积层,而且你希望跨空间共享参数,以便 每个滤波器只有一组参数,可设置 shared_axes=[1, 2]。 参考文献 • Delving Deep into Rectifiers: Surpassing Human-Level
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    微博在线机器学习和深度学习实践 黄波 @黄波_WB 资深技术专家 2019.5 目录 1.推荐篇 2.平台篇 3.总结篇 1 目录 • 推荐场景 • 推荐 • 在线机器学习 • 深度学习 • 平台背景 • 平台架构 • 平台效果 • 微博技术里程碑 • 微博业务生态 推荐篇 APPLICATION 推荐场景、在线机器学习和深度学习 11 1 推荐场景 • 视频推荐流 1 推荐场景 • 推荐 • 在特定场景下,根据用户行为和特点,向用户推荐感兴趣的对象集 • 模型: • 趋势 • 实时化:在线机器学习 • 深度化:深度学习 • 平台化:机器学习平台 2 推荐 • 实时化 • 特征实时化:更及时反馈用户行为,更细粒度刻画用户 • 模型实时化:根据线上样本实时训练模型,及时地反映对象的线上变化 模型推理 预测服务 实时特征 实时数据 但同时对模型服务的性能要求更高 4 深度学习-效果 平台篇 PLATFORM 平台背景、平台架构和平台效果 12 • 平台背景-平台化 成本 效率 效果 实时 机器 人力 时间 开发 运行 迭代 规模 深度 1 平台背景 算法/模型 计算 数据/特征 存储 基础/IDE 业务 调度 集群 2 平台架构 计算 机器学习平台 Feed排序 推荐流 文本分类/检测
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    超大规模深度学习在美团的应用 余建平 美团点评用户平台研究员 自我介绍 自我介绍 2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 。 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX  MLX平台目标  MLX平台架构 • 模型场景应用  召回模型  排序模型 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX  MLX平台目标  MLX平台架构 • 模型场景应用  召回模型  排序模型 美团超大规模模型应用场景 美团推荐 美团搜索 美团广告 美团应用场景简介 LBS相关的推荐 • 模型特点 百亿级别的训练数据 千亿级别的模型特征 秒级实时的模型反馈 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX  MLX平台目标  MLX平台架构 • 模型场景应用  召回模型  排序模型 超大规模模型的有效性 • VC维理论  描述模型的学习能力:VC维越大模型越复杂,学习能力越强  机器学习能力 = 数据
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
构建基于媒体数据弹性深度学习计算平台阿里云上建模实践程孟力AI模型千问qwen中文文档动手v2房源质量打分应用算法优化周玉驰机器课程温州大学01引言KerasPython微博在线黄波超大大规规模大规模超大规模美团建平
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩