积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部中文(简体)(12)英语(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.064 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 阿里云上深度学习建模实践-程孟力

    配置中心 AB实验 实验工具 拉取配置 监控报警 Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 平台支持 日志SLS 在线存储 Hologres/OTS BE Redis 读取数据 向量引擎 BE/Hologres/Faiss/Milvus 向量检索
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    深度学习-深度学习模型训练 • 分布式模型推理框架:WeiServing 异构CPU集群 kubernetes/ol-submit RPC服务框架 LR/GBDT DNN/DeepFM/W&D 负载均衡/统一版本管理/动态加载/批量化机制 特征映射 Embedding 数据处理 异构GPU集群 CNN 业务应用 模型服务 框架 排序模型服务 多媒体分析服务 自然语言分析服务 集群调度层
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 华为云深度学习在文本分类中的实践-李明磊

    大 上] [1, 22, 32, 46, 876, 55, 98, 20] 11 1 2 3 4 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 12 数据不均衡 13 数据不均衡 预处理方法  上采样  下采样  SMOTE  数据增广 集成方法  SMOTEbagging 改损失函数  Focal loss “An Insight 1 动力 外观 内饰 空间 操控 油耗 舒适性 性价比 汽车细粒度情感分析各属性结果 Accuracy F  定制化Loss,单模型多输出  数据标注灵活  结合数据增强,针对不均衡数据做优化 评论 动力 外观 空间 油耗 2.0T涡轮增压发动机动力强,高速120超车没压力;外观是我和老婆都比较喜欢的 款;后排空间有点小;有点费油啊。 20 其他分类案例 客服话题 分类
    0 码力 | 23 页 | 1.80 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-15深度学习-GAN

    的核心思想来源于博弈论的纳什均衡。 它设定参与游戏双方分别为一个生成器 (Generator) 和一个判别器(Discriminator),生成器的目的是尽 量去学习真实的数据分布,而判别器的目的是尽量 正确判别输入数据是来自真实数据还是来自生成器; 为了取得游戏胜利,这两个游戏参与者需要不断优 化, 各自提高自己的生成能力和判别能力,这个学 习优化过程就是寻找二者之间的一个纳什均衡。 GAN的理论与实现模型 的研究进展表明它具有广阔的发展前景。 如WGAN 彻底解决了训练不稳定问题,同时基本解决了崩溃模式现象。未来研究方向 可以是: (1)如何彻底解决崩溃模式并继续优化训练过程 。 (2)关于 GAN 收敛性和均衡点存在性的理论推断。 (3)如何将GAN 与特征学习、模仿学习、强化学习等技术更好地融合 , 开 发新的人工智能应用或者促进这些方法的发展 。 4. GAN的思考与前景 34 参考文献 1
    0 码力 | 35 页 | 1.55 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    增量提供ACK机制,确保模型正确性 Parameter Server • 模型数据的统一管理  模型结构  模型参数 PS的参数放置策略 • Ps分布式分片的均衡,避免分片大小不一致  NN网络矩阵按行切分,解决请求包不均衡问题  特征按照Hash方式分布式存储 • 模型并行调超参  grid search  random search PS的多模型训练 • 提高内存使用效率
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    深度学习算法也需要“深度”学习业务需求 - 处理特殊输入,如模糊、黑白照片 - 适配具有不同特征的数据源 - 在严肃应用中,客户追求100%准确率,算法性能提升永无止境 • 深度学习模型需要在准确率和速度上做均衡 - 使用更加精巧的模型和Operator设计 - 使用模型压缩算法,在基本保障准确率的情况下大幅提升速度 - 利用最新的硬件特性,如GPU TensorCore/int8 *示意图来自互联网
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05机器学习-机器学习实践

    用k个模型分别对交叉验证集计算得 出交叉验证误差(代价函数的值) 3. 选取代价函数值最小的模型 4. 用步骤3中选出的模型对测试集计算得出 推广误差(代价函数的值) 6 数据不平衡是指数据集中各类样本数量不均衡的情况. 常用不平衡处理方法有采样和代价敏感学习 采样欠采样、过采样和综合采样的方法 不平衡数据的处理 7 SMOTE(Synthetic Minority Over-sampling Technique)算法是过采样
    0 码力 | 33 页 | 2.14 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    第 13 章 生成对抗网络 13.1 博弈学习实例 13.2 GAN 原理 13.3 DCGAN 实战 13.4 GAN 变种 预览版202112 13.5 纳什均衡 13.6 GAN 训练难题 13.7 WGAN 原理 13.8 WGAN-GP 实战 13.9 参考文献 第 14 章 强化学习 14.1 先睹为快 14.2 强化学习问题 512,图片细节极其逼真。 图 13.13 BigGAN 生成图片样片 预览版202112 第 13 章 生成对抗网络 16 13.5 纳什均衡 现在我们从理论层面进行分析,通过博弈学习的训练方式,生成器 G 和判别器 D 分别 会达到什么平衡状态。具体地,我们将探索以下两个问题: ❑ 固定 G,D 会收敛到什么最优状态?∗? (∙)时,此时从生成网络中采样的样本非常逼真,判 别器无法区分,即判定为真假样本的概率均等,如图 13.14(d)所示。 这个例子直观地解释了 GAN 网络的训练过程。 图 13.14 纳什均衡点 [1] 13.5.1 判别器状态 现在来推导第一个问题。回顾 GAN 的损失函数: ℒ(?, ?) = ∫?r(?)log(?(?)) ?? ? + ∫? (?) log (1 −
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    带来的问题:� • ⼿动指定机器很繁琐� • 端⼝冲突� • 机器负载不均� TensorFlow使用现状及痛点 • ⼿动分发训练样本� • ⼿动拉取训练模型� TensorFlow使用现状及痛点 • 多⼈多服务器使用混乱,计算资源如何划分?� • 没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死�
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    garbage out.”)此外,糟糕的预测性能甚至会加倍放大事态的严重性。在一些敏 感应用中,如预测性监管、简历筛选和用于贷款的风险模型,我们必须特别警惕垃圾数据带来的后果。一种 常见的问题来自不均衡的数据集,比如在一个有关医疗的训练数据集中,某些人群没有样本表示。想象一下, 假设我们想要训练一个皮肤癌识别模型,但它(在训练数据集中)从未“见过”黑色皮肤的人群,这个模型 就会顿时束手无策。 sum(self.times) def cumsum(self): """返回累计时间""" return np.array(self.times).cumsum().tolist() 现在我们可以对工作负载进行基准测试。 首先,我们使用for循环,每次执行一位的加法。 c = torch.zeros(n) timer = Timer() for i in range(n): c[i] = a[i] 下降和批量梯度下降所需的时间短。 mini1_res = train_sgd(.4, 100) loss: 0.243, 0.003 sec/epoch 将批量大小减少到10,每个迭代轮数的时间都会增加,因为每批工作负载的执行效率变得更低。 mini2_res = train_sgd(.05, 10) loss: 0.243, 0.013 sec/epoch 现在我们可以比较前四个实验的时间与损失。可以看出,
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
阿里云上深度学习建模实践程孟力微博在线机器黄波华为文本分类李明磊课程温州大学15GAN超大大规规模大规模超大规模美团应用建平QCon北京2018未来都市智慧城市基于视觉陈宇恒05PyTorch深度学习TensorFlowonYarn遇上数据动手v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩